3.1. Абсорбция жидкостями
Абсорбция жидкостями применяется в промышленности для извлечения из газов диоксида серы, сероводорода и других сернистых соединений, оксидов азота, паров кислот (НСl, HF, H2SO4), диоксида и оксида углерода, разнообразных органических соединений (фенол, формальдегид, летучие растворители и др.).
Абсорбционные методы служат для технологической и санитарной очистки газов. Они основаны на избирательной растворимости газо- и парообразных примесей в жидкости (физическая абсорбция) или на избирательном извлечении примесей химическими реакциями с активным компонентом поглотителя (хемосорбция). Абсорбционная очистка –непрерывный и, как правило, циклический процесс, так как поглощение примесей обычно сопровождается регенерацией поглотительного раствора и его возвращением в начале цикла очистки. При физической абсорбции (и в некоторых хемосорбционных процессах) регенерацию абсорбента проводят нагреванием и снижением давления, в результате чего происходит десорбция поглощенной газовой примеси и ее концентрированно.
Показатели абсорбционной очистки: степень очистки (КПД) и коэффициент массопередачи k зависят от растворимости газа в абсорбенте,
технологического режима в реакторе (w, Т, р) и от других факторов, например от равновесия и скорости химических реакций при хемосорбции. В хемосорбционных процессах, где в жидкой фазе происходят химические реакции, коэффициент массопередачи увеличивается по сравнению с физической абсорбцией. Большинство хемосорбционных процессов газоочистки обратимы, т.е. при повышении температуры поглотительного раствора химические соединения, образовавшиеся при хемосорбции, разлагаются с регенерацией активных компонентов поглотительного раствора и с десорбцией поглощенной из газа примеси. Этот прием положен в основу регенерации хемосорбентов в циклических системах газоочистки. Хемосорбция в особенности применима для тонкой очистки газов при сравнительно небольшой начальной концентрации
примесей.
Абсорбенты, применяемые в промышленности, оцениваются по следующим показателям:
1) абсорбционная емкость, т. е. растворимость извлекаемого компонента в поглотителе в зависимости от температуры и давления;
2)селективность, характеризуемая соотношением растворимостей разделяемых газов и скоростей их абсорбции;
3) минимальное давление паров во избежание загрязнения очищаемого газа парами абсорбента;
4) дешевизна;
5) отсутствие коррозирующего действия на аппаратуру. В качестве абсорбентов применяют воду, растворы аммиака, едких и карбонатных щелочей, солей марганца, этаноламины, масла, суспензии гидроксида кальция, оксидов марганца и магния, сульфат магния и др.
Очистная аппаратура аналогична уже рассмотренной аппаратуре мокрого улавливания аэрозолей. Наиболее распространен насадочный скруббер, применяемый для очистки газов от диоксида серы, сероводорода, хлороводорода, хлора, оксида и диоксида углерода, фенолов и т. д. В насадочных скрубберах скорость массообменных процессов мала из-за малоинтенсивного гидроднамического режима этих реакторов, работающих при скорости газа v= 0,02-0,7 м/с. Объемы аппаратов поэтому велики и установки громоздки.
Для очистки выбросов от газообразных и парообразных примесей применяют и интенсивную массообменную аппаратуру —пенные аппараты, безнасадочный форсуночный абсорбер, скруббер Вентури, работающие при более высоких скоростях газа.
Пенные абсорберы работают при v = 1- 4 м/с и обеспечивают сравнительно высокую скорость абсорбционно-десорбционных процессов; их габариты в несколько раз меньше, чем насадочных скрубберов. При достаточном числе ступеней очистки (многополочный пенный аппарат) достигаются высокие показатели глубины очистки: для некоторых процессов до 99,9%.
Особенно перспективны для очистки газов от аэрозолей и вредных газообразных примесей пенные аппараты со стабилизатором пенного слоя. Они сравнительно просты по конструкции и работают в режиме высокой турбулентности при линейной скорости газа до 4-5 м/с.
Примером безотходной абсорбционно-десорбционной циклической схемы может служить поглощение диоксида углерода из отходящих газов растворами моноэтаноламина с последующей регенерацией поглотителя при десорбции СО2. Десорбция СО2 проводится также при пенном режиме. Установка безотходна, так как чистый диоксид углерода после сжижения передается потребителю в виде товарного продукта.
Абсорбционные методы характеризуются непрерывностью и универсальностью процесса, экономичностью и возможностью извлечения больших количеств примесей из газов. Недостаток этого метода в том, что насадочные скрубберы, барботажные и даже пенные аппараты обеспечивают достаточно высокую степень извлечения вредных примесей (до ПДК) и полную регенерацию поглотителей только при большом числе ступеней очистки. Поэтому технологические схемы мокрой очистки, как правило, сложны, многоступенчаты и очистные реакторы (особенно скрубберы) имеют большие объемы.
Любой процесс мокрой абсорбционной очистки выхлопных газов от газо- и парообразных примесей целесообразен только в случае его цикличности и безотходности. Но и циклические системы мокрой очистки конкурентоспособны только тогда, когда они совмещены с пылеочисткой и охлаждением газа.
- Курсовая работа
- Содержание
- Введение
- 1. Современные методы расчёта загрязнения воздушного бассейна
- 1.1. Поведение загрязняющих веществ в атмосфере
- 1.2. Экспертиза состояния атмосферы
- 1.3. Расчёт выбросов вредных веществ
- 2. Очистка выбросов в атмосферу от твердых частиц
- Зависимость аппарата для улавливания от размера частиц
- 2.1. Сухие методы механической очистки
- 2.2. Мокрые способы очистки
- 2.3. Электростатическая очистка
- 2.4. Очистка выбросов с помощью звуковой и ультразвуковой коагуляции
- 3. Очистка выбросов от газов и газообразных примесей
- 1) Абсорбция жидкостями;
- 3) Каталитическая очистка.
- 3.1. Абсорбция жидкостями
- 3.2. Адсорбционные методы
- 3.3. Каталитическая очистка
- 3.4. Термические методы
- 3.5. Безотходные технологии
- 4. Предельно допустимые выбросы
- II Расчётная часть
- Вариант задания для составления карты рассеивания токсичных выбросов
- Параметры выброса источника вредных веществ
- Пдк токсичных веществ
- 1. Расчёт выбросов токсичных веществ и концентрации токсичных веществ на расстоянии от источника выброса
- 2. Мероприятия по снижению загрязнения атмосферного воздуха.
- 2.1. Технологические мероприятия
- 2.2.Организация санитарно-защитной зоны.
- Заключение
- Библиографический список