logo search
1 курс / 1 семестр / ЭКЗАМЕНЫ / Метеорология и климатология

8. Солнечная радиация: электромагнитная и корпускулярная радиация. Спектральный состав солнечной радиации.

Корпускулярная радиация - потоки частиц вещества — преимущественно плазмы, атомных ядер и элементарных частиц, обладающие значительными скоростями, весьма, однако, далекими от скорости света. Сюда относятся альфа-лучи и бета-лучи, испускаемые радиоактивными элементами, космическое излучение, корпускулярная радиация Солнца, радиационный пояс атмосферы. Следует всегда помнить, что К. Р. — явление совершенно иное, чем электромагнитная радиация.

Электромагни́тное излуче́ние (электромагнитная радиация) — распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля.

Среди электромагнитных полей вообще, порождённых электрическими зарядами и их движением, принято относить собственно к излучению ту часть переменных электромагнитных полей, которая способна распространяться наиболее далеко от своих источников — движущихся зарядов, затухая наиболее медленно с расстоянием.

Электромагнитное излучение подразделяется на:

Электромагнитное излучение способно распространяться практически во всех средах. В вакууме (пространстве, свободном от вещества и тел, поглощающих или испускающих электромагнитные волны) электромагнитное излучение распространяется без затуханий на сколь угодно большие расстояния, но в ряде случаев достаточно хорошо распространяется и в пространстве, заполненном веществом (несколько изменяя при этом своё поведение).

В спектре солнечной радиации на интервал длин волн между 0,1 и 4 мкм приходится 99% всей энергии солнечного излучения. Всего 1% остается на радиацию с меньшими и большими длинами волн, вплоть до рентгеновских лучей и радиоволн.

Видимый свет занимает узкий интервал длин волн. Однако в этом интервале заключается половина всей солнечной лучистой энергии. На инфракрасное излучение приходится 44%, а на ультрафиолетовое — 9% всей лучистой энергии.

Распределение энергии в спектре солнечной радиации до поступления ее в атмосферу в настоящее время известно достаточно хорошо благодаря измерениям со спутников. Оно достаточно близко к теоретически полученному распределению энергии в спектре абсолютно черного тела при температуре около 6000 К.

Некоторые вещества в особом состоянии излучают радиацию в большем количестве и в другом диапазоне длин волн, чем это определяется их температурой. Возможно, например, испускание видимого света при таких низких температурах, при которых вещество обычно не светится. Эта радиация, не подчиняющаяся законам теплового излучения, называется люминесцентной.

Люминесценция может возникнуть, если вещество предварительно поглотило определенное количество энергии и пришло в так называемое возбужденное состояние, более богатое энергией, чем энергетическое состояние при температуре вещества. При обратном переходе вещества — из возбужденного состояния в нормальное — и возникает люминесценция. Люминесценцией объясняются полярные сияния и свечение ночного неба.