logo
Актуальні проблеми у сфері екологічної безпеки

2. Нанотоксикологія: поняття, мета і завдання. Токсичність наноматеріалів

Формування нанотоксикології як наукової дисципліни почалося давно, однак визнання вона отримала порівняно недавно. Зокрема, увагу співтовариства по дослідженню нанотоксикології привернула опублікована у 2004 робота Чіу-Вінг Лема (Центр космічних досліджень Джонсона Національного агентства по аеронавтиці та дослідженню космічного простору) і Девіда Вархайта (лабораторія Дюпон Хаскел по науках про здоровя і навколишнє середовище США), в якій йдеться про можливості негативного впливу цих нових матеріалів. У роботі Лема і Вархайта розглядалися нові вироблені матеріали (вуглецеві нанотрубки) і описувалися виявлені несприятливі ефекти (гранулеми) при введенні їх у легені гризунів. Ці результати призвели до усвідомлення нанотехнологічним співтовариством того, що вироблені наноматеріали можуть виявитися шкідливими для здоровя людей. Внаслідок цього виникла гостра необхідність досліджень потенційного негативного впливу вироблених наноматеріалів на здоровя Нанотоксикология- http://www.bonasana.org/storage/files/нанотоксикология.pdf.

Активне впровадження наноматеріалів у клінічну медицину вимагає глибокого знання потенційних ризиків і побічних ефектів, повязаних з використанням цих матеріалів. Виробничі цикли, спрямовані на створення нових наноматеріалів, також можуть супроводжуватися нагромадженням відходів, що спричиняють токсичну, канцерогенну і мутагенну дію на організм людини. У звязку з цим, в спеціальній літературі останніх років значна увага приділяється висвітленню питань безпеки наноматеріалів і нанотехнологій у медицині та біології. Галузь досліджень, повязаних з вивченням безпеки наноматеріалів, отримала назву нанотоксикології Нанотехнологии в биологии и медицине. Коллективная монография под ред. чл.-корр. РАМН, проф. Е. В. Шляхто. 2009 г. - http://prostonauka.com/nano/nanotehnologii-v-biologii-i-medicine.

Нанотоксикологія (англ. Nanotoxicology) - це вивчення токсичності наноматеріалів, тобто наука про створені нанопристрої і наноструктури, що має справу з їхнім впливом на живий організм Словник термінів нанотехнологій - http://www.portalnano.ru/read/tezaurus/definitions/nanotoxicology.

Наноматеріали, створені навіть з інертних сполук, таких як золото, стають високоактивними у нанометровому діапазоні. Таким чином, нанотоксикологія вивчає, чи будуть (і в яких кількісних співвідношеннях) наноматеріали ставати небезпечними для навколишнього середовища і людини. Токсичні ефекти наночастинки, що має розміри < 100нм у діаметрі, можуть проявлятися навіть у тому випадку, коли більші частки даної сполуки не є токсичними. Токсичність можуть проявляти як штучно створені наночастинки, так і наночастинки природного походження з вулканічних викидів, атмосфери і т.д. Найбільш вивчені на сьогоднішній день наночастинки - це діоксид титану, окис алюмінію, оксид цинку, вуглецеві нанотрубки і т.д. Через квантові ефекти, викликані малими розмірами і великою площею (відносно розмірів) поверхні, наноматеріали мають унікальні властивості. У деяких наночастинок проявляються незвичайні патогенні властивості.

Мета нанотоксикології: дослідження ризику, повязаного із взаємодією наноматеріалів з організмом людини і навколишнім природним середовищем Сарвилина И. В. „Нанотоксикология - новое направление для исследований” III съезд токсикологов России Москва, 1-5 декабря 2008 года г. Ростов-на-Дону, 2008 - http://www.slideshare.net/transwoman/ss-presentation-866132.

Питання нанотоксичності неоднозначне і багатогранне, вимагає комплексного підходу. Однією з основних проблем у цій сфері є те, що нанотоксикологією на сучасному етапі переважно займаються непрофесійні токсикологи.

Пріоритетним напрямом нанотоксикології є встановлення нових стандартів для хімічної характеристики наночастинок і оцінка їхніх біологічних ефектів для тестування регуляторної токсичності. На жаль, традиційних підходів для оцінки токсичності хімічних речовин недостатньо для вивчення речовин у нанофазі, тому що розмір часток і площа поверхні можуть мати особливе значення, при цьому концентрація маси може бути не найкращим виміром для опису залежності „доза-ефект” Н.Г. Проданчук, Г.М. Балан. Нанотоксикология: состояние и перспективы исследований. - http://www.nbuv.gov.ua/portal/Chem_Biol/Spt/2009_3-4/str04.pdf.

Визначення залежності ступеня токсичності наночастинок від їх виду є надзвичайно важливим завданням нанотоксикології. Адже різноманітність наночастинок вражає: ліпосоми, емульсії, полімери, керамічні наноструктури, наночастинки у золотій скорині (в англомовній літературі "Gold shell nanoparticles"), вуглецеві наноматеріали -- фулерени та нанотрубки (які можуть бути одно-- або багатошаровими. Кожен вид наночастинки має, крім загальних для всіх наноматеріалів, і свої властивості, які слід вивчати у токсикологічному аспекті.

Одним з позачергових напрямків нанотоксикології має стати вивчення джерел утворення наночастинок та шляхів їх надходження в оточуюче середовище, поведінку у ньому -- накопичення, перерозподіл між його складовими (повітря, ґрунт, вода); стабільності; розпаду та визначення його продуктів. Відомо, що концентрація будь-якої речовини антропогенного походження в екосистемі прямо пропорційна використанню її у народному господарстві. Зважаючи на інтенсивність зростання темпів ужитку продуктів нанотехнології можна передбачити, що у найближчому майбутньому наночастинки посядуть чільне місце серед забруднювачів довкілля.

Окремими розділами нанотоксикології мають стати дослідження фармакокінетичних властивостей продуктів нанотехнології. Актуальним є вивчення шляхів потрапляння наночастинок в організм не лише людини, а й тварин і рослин, які вживаються у їжу. До цього ж розділу слід віднести виявлення особливостей абсорбції, розподілу, метаболізму та екскреції окремих видів наночастинок.

Певні відомості з фармакокінетики наноматеріалів уже накопичено Див. Додаток 1. Нині найпоширенішим шляхом потрапляння наноречовин до організму є інгаляційний. Це повязано з тим, що основна маса наночастинок, які потрапляють в організм людини, -- це продукти горіння на промислових обєктах, серед яких є і частинки нанорозмірів. Вважається, що завдяки своїм малим розмірам наночастинки можуть швидко долати біологічні барєри та розподілятися по організму.

Nemmar A. зі співавторами показали, що вже через одну хвилину після інгаляції карбонові наночастинки, мічені радіоактивним 99Tc розміром близько 100 нм, виявлялися у крові Чекман І.С., Сердюк А.М., Кундієв Ю.І., Трахтенберг І.М., Каплінський С.П., Бабій В.Ф. Нанотоксикологія: напрямки досліджень довкілля та здоровя № 1 (48), 2009 - http://www.nbuv.gov.ua/portal/chem_biol/Environment/2009/01-1.pdf.

До шлунково кишкового тракту наночастинки можуть потрапити не лише прямо з їжі чи води, а й разом зі слизом із дихальних шляхів. Jani P. зі співавторами повідомляють, що наночастинки, які потрапляють до кишечника, здатні проходити його слизову та розподілятися по організму гематогенним шляхом. Однак інша група вчених не виявила доказів того, що наночастинки, які потрапили per os, здатні всмоктуватися. Вони вважають, що наноматеріали виділяються з фекаліями, не потрапляючи до внутрішнього середовища. Дискусійним залишається питання щодо можливості транскутанного шляху потрапляння наночастинок до організму хребетних, хоча є повідомлення про здатність квантових міток проникати у шкіру свиней. Причому проникливість залежить від розміру мітки та хімічного складу її зовнішньої оболонки.

Незясованими залишаються питання залежності фармакокінетики наноматеріалів від виду наночастинки, окремих її властивостей. Було показано, що абсорбція та розподіл по організму квантових міток залежить від форми, заряду та хімічного складу зовнішньої оболонки, шляхів уведення тощо. Подібні експерименти провадилися із застосування багатошарових вуглецевих нанотрубок.

Виявилося, що їхня властивість проникати через біобарєри залежить від розміру та форми трубок. Однак ця проблема повною мірою не висвітлена у літературі.

Актуальним є вивчення механізмів розподілу наночастинок по організму та механізмів проникнення до клітини.

Як і для будь-якої речовини, для наночастинок основним механізмом "доставки" до органів є гематогенний шлях. Однак вже встановлено, що принаймні деякі наночастинки здатні переміщатися аксональним транспортом та лімфатичними шляхами. Так, у дослідах на щурах показано, що при інгаляції мічених мітками фулеренів та карбонових наночастинок з середнім діаметром близько 35 нм останні накопичувалися у нюховій цибулині мозку щурів, що вказувало саме на нейрональний транспорт як шлях їх потрапляння до ЦНС.

У цьому аспекті значний інтерес викликає здатність наночастинок звязуватися з білками під час свого перебування в організмі. Було показано, що у білках, які абсорбуються на наночастинках, відбуваються конфірмаційні зміни. Невідомо, як впливає на властивості наночастинок звязування з білками плазми крові. Чи мають наночастинки антигенні властивості, також до кінця не зясовано. Водночас більш детальних відомостей щодо фармакокінетичних властивостей інших наночастинок знайти не вдалося. Вже з цих небагатьох даних видно визначальні особливості наноматеріалів, що вимагає поглибленого вивчення їх.

Особливої уваги у фармакокінетичних дослідженнях нанотоксичності має посісти метаболізм наночастинок у живому організмі. Відомостей у літературі щодо перетворення наночастинок in vivo набагато менше, ніж про інші фармакокінетичні характеристики. Невідомо, наскільки безпечними чи, навпаки, небезпечними є для людини продукти їх біодеградації. У літературних джерелах є повідомлення про те, що полімерні наночастинки та суперпарамагнетичні наноструктури оксиду заліза здатні розпадатися в організмі. Дослідження деяких авторів доводять, що ядро квантових міток, яке складалося із сульфідів кадмію та цинку, залишається інтактним протягом місяця в організмі лабораторних щурів. Даних про можливість метаболізму інших наночастинок знайти не вдалося. Якщо наночастинки здатні розпадатися в організмі чи в оточуючому середовищі, важливо визначити можливі токсикологічні особливості продуктів цього розпаду. Так, було показано, що квантові мітки, в яких відбувся фотоліз, є більш токсичними для культури клітин порівняно з інтактними наноструктурами.

Серед першочергових завдань токсикодинаміки наноматеріалів стоїть питання вивчення загальних закономірностей взаємодії наночастинок з живими організмами. Зовсім недослідженими є типові патологічні процеси, що можуть викликатися наночастинками у живому організмі. Із сучасних джерел відомо, що одним з основних механізмів ушкодження (якщо не головним), спричиненого наноструктурами, є оксидативний стрес, що призводить до активації різних факторів транскрипції, які, у свою чергу, підвищують синтез прозапальних речовин. Так, активація міто-генактивуючої протеїнкінази та ядерного фактора КВ наночастинками, які утворюються при згорянні, підвищують транскрипцію прозапальних речовин та фактора некрозу пухлин-б Чекман І.С., Сердюк А.М., Кундієв Ю.І., Трахтенберг І.М., Каплінський С.П., Бабій В.Ф. Нанотоксикологія: напрямки досліджень довкілля та здоровя № 1 (48), 2009 - http://www.nbuv.gov.ua/portal/chem_biol/Environment/2009/01-1.pdf.

A. Gatti et all Н.Г. Проданчук, Г.М. Балан. Нанотоксикология: состояние и перспективы исследований. - http://www.nbuv.gov.ua/portal/Chem_Biol/Spt/2009_3-4/str04.pdf вивчали наявність наночастинок у крові, спермі та фолікулярній рідині у солдатів війни в Перській затоці із незвичайною патологією, що не укладається в синдромологію відомих захворювань. Автори виявили наночастинки вуглецю, вольфраму, свинцю, кобальту та ін. у біосередовищах солдат і вважають, що їхні захворювання є "нанопатологією", обумовленої впливом наночастинок, які можливо утворювалися при вибухах бомб із незбагаченим ураном, а також при вибухах вольфрамової зброї або при горінні нафтових свердловин.

Наноматеріали характеризуються особливостями, що дозволяють припустити їх генотоксичну дію: високою проникаючою здатністю на рівні організму, органів, тканин і клітин; індукцією вільних радикалів, у тому числі активних форм кисню і азоту; ушкодженням цитоскелету; здатністю деяких наноматеріалів долати каріолему і розміщуватися в ядрі клітини; конюгацією із ДНК; складом деяких наноматеріалів, що включають атоми хімічних сполук, які чинять канцерогенну дію, наприклад, кадмію або мишяку; подібністю будови деяких наноматеріалів із волокнами азбесту, що чинить генотоксичну і канцерогенну дію.

Генотоксична активність наноматеріалів визначається їхньою здатністю индуціювати активні радикали кисню і азоту, що ушкоджують ДНК, а також високою проникністю і прямою дією на внутрішньоклітинні структури, у тому числі на цитоскелет і хроматин.

Аналіз представлених робіт показує, що генотоксична активність наноматеріалів майже не вивчена. Наведені дані отримані на обмеженій кількості наноматеріалів і, здебільшого, у дослідах in vitro. З іншого боку, навіть це невелике число робіт вказує на здатність наноматеріалів индуціювати Днк-ушкодження, хромосомні аберації, мікроядра, анеуплодію. Нещодавно виявлені наслідки генотоксичної дії наноматеріалів: ультратонкі частки діоксида титану (<100нм у діаметрі), викликали фіброз і рак легенів у пацюків Сычева Л.П. Генотоксическое действие наноматериалов.-http://www.erh.ru/nano/pdf/st10.pdf.

Таким чином, є підстави побоюватися генотоксичної дії наноматеріалів на організм людини і важких наслідків цього, у першу чергу канцерогенного ефекту. Можна припускати, що наноматеріали будуть більш активні при дії на генетичний апарат клітин у порівнянні з мікрочастинками.

Отже, нагальною потребою є створення системи оцінки генетичної безпеки наноматеріалів, основою якої може бути загальноприйнятий підхід до оцінки мутагенних властивостей хімічних сполук, найбільш детально розроблений для лікарських препаратів.

На підставі аналізу результатів досліджень по оцінці токсичності наноматеріалів у Додатку 2 представлені узагальнені дані щодо вивчення їх токсичних і патофізіологічних ефектів.