Антропогенное воздействие на гидросферу. Нормирование ионизирующих излучений

реферат

2. Нормирование ионизирующих излучений

Ионизирующее излучение - в самом общем смысле - различные виды микрочастиц и физических полей, способные ионизировать вещество. В более узком смысле к ионизирующему излучению не относят ультрафиолетовое излучение и излучение видимого диапазона света, которое в отдельных случаях также может быть ионизирующим. Излучение микроволнового и радиодиапазонов не является ионизирующим.

Экологически значимая характеристика атмосферы - присутствие в ней ионизирующих излучений, мощность которых меняется в зависимости от географического положения и высоты над уровнем моря.

В природе ионизирующее излучение обычно генерируется в результате спонтанного радиоактивного распада радионуклидов, ядерных реакций (синтез и индуцированное деление ядер, захват протонов, нейтронов, альфа-частиц и др.), а также при ускорении заряженных частиц в космосе. Искусственными источниками ионизирующего излучения являются искусственные радионуклиды (генерируют альфа-, бета - и гамма-излучения), ядерные реакторы (генерируют главным образом нейтронное и гамма-излучение), радионуклидные нейтронные источники, ускорители элементарных частиц (генерируют потоки заряженных частиц, а также тормозное фотонное излучение), рентгеновские аппараты (генерируют тормозное, рентгеновское излучение).

Виды ионизирующего излучения:

По механизму взаимодействия с веществом выделяют непосредственно потоки заряжённых частиц и косвенно ионизирующее излучение (потоки нейтральных элементарных частиц - фотонов и нейтронов).

По механизму образования - первичное (рождённое в источнике) и вторичное (образованное в результате взаимодействия излучения другого типа с веществом) ионизирующее излучение.

Ионизирующее излучение бывает также корпускулярным и электромагнитным (фотоновым). Корпускулярное излучение представляет собой поток частиц с массой потока отличной от нуля (альфа и бета - частиц, протонов, нейтронов и др.). К электромагнитному излучению относятся гамма-излучение и рентгеновское излучение.

К основным видам радиоактивных излучений относятся:

Альфа-излучение - это поток ядер гелия, который излучается веществом при радиоактивном распаде ядер с энергией, которая не превышает нескольких мегаэлектровольт (МеВ). Эти частички имеют высокую ионизирующую и низкую проникающую способность.

Бета-частицы - это поток электронов и протонов. Проникающая способность (2,5 см в живых тканях и в воздухе - до 18 м) бета-частиц выше, а ионизирующая - ниже, чем у альфа-частиц.

Нейтроны вызывают ионизацию веществ и вторичное излучение, которое состоит из заряженных частичек и гамма-квантов. Проникающая способность зависит от энергии и от состава веществ, которые взаимодействуют.

Гамма-излучение - это электромагнитное (фотонное) излучение с большой проникающей и малой ионизирующей способностью с энергией 0,001 3 МеВ.

Рентгеновское излучение - излучение, возникающее в среде, которая окружает источник бета-излучения, в ускорителях электронов и является совокупностью тормозного и характерного излучений, энергия фотонов которых не превышает 1 МеВ. Характерным называют фотонное излучение с дискретным спектром, который возникает при изменении энергетического состояния атома.

Тормозное излучение - это фотонное излучение с непрерывным спектром, которое возникает при изменении кинетической энергии заряженных частичек.

Естественными источниками ионизирующих излучений являются космическое пространство, а также сосредоточенные в земной коре радиоактивные нуклиды урана, тория и актиния, выделяющие в процессе распада в атмосферу изотопы радона. Половину годовой индивидуальной эффективной дозы облучения от земных источников радиации человек получает от невидимого, не имеющего вкуса и запаха тяжелого газа радона.

В природе радон встречается в двух основных изотопах: радон-222, член радиоактивного ряда, образуемого продуктами распада урана-238, и радон-220, член радиоактивного ряда тория-232. Радон в 7,5 раз тяжелее воздуха и является альфа-радиоактивным. Период полураспада радона-222 равен 3,8 сут. После распада ядро радона превращается в ядро полония. Заканчивается ряд стабильным изотопом свинца. Основную часть дозы облучения от радона человек получает, находясь в закрытых, непроветриваемых помещениях. Радон может проникать сквозь трещины в фундаменте, через пол из земли и накапливаться в основном в нижних этажах жилых зданий. Одним из источников радона могут быть конструкционные материалы, используемые в строительстве. К ним в первую очередь относятся такие материалы, как гранит, пемза, глинозем.

По мере подъема над поверхностью Земли (с удалением от источника) интенсивность облучения ионизирующими излучениями от земных источников постепенно уменьшается.

Другой естественный источник ионизирующего излучения - космос. Из него на Землю поступают космические лучи, представленные потоками высокоэнергетических протонов (примерно 90%), ядер атомов гелия (около 9%), нейтронов, электронов и ядер легких элементов (1%). Мощную защиту человека и всей биосферы от космических заряженных частиц радиации создает магнитное поле Земли. Тем не менее часть частиц с высокой энергией преодолевает магнитосферу и достигает верхних слоев атмосферы.

Радиационный фон, создаваемый космическими лучами, составляет половину всего облучения, получаемого человеком от естественных источников радиации. Защититься от такого невидимого "космического душа" невозможно, причем различные участки поверхности планеты подвергаются его воздействию по-разному. Северный и Южный полюсы получают больше космической радиации, чем экваториальные области (так как защитное влияние магнитного поля здесь ослаблено).

В соответствии с нормами радиационной безопасности (НРБ-99) доза эффективная (эквивалентная) годовая - это количество энергии ионизирующих излучений, поглощенных организмом человека за год, с учетом радиочувствительности к соответствующим видам излучения как всего тела, так и его отдельных органов и тканей. Она (доза) равняется сумме эффективной (эквивалентной) дозы внешнего облучения, полученной за календарный год, и ожидаемой эффективной (эквивалентной) дозы внутреннего облучения, обусловленной поступлением радионуклидов внутрь организма за тот же год. Единица измерения в системе СИ - зиверт (Зв). Данное понятие характеризует меру риска возникновения отдаленных последствий облучения человека. Итак, на Земле естественный радиационный фон на уровне моря составляет 0,5 мГр/год. На высоте 1 500 м он уже в 2 раза выше, на высоте 6 000 м (полет самолета) в 5 раз выше.

Антропогенными источниками ионизирующих излучений и ряда долго - и короткоживущих изотопов являются ядерные взрывы, атомная энергетика, включая объекты по переработке и захоронению ее отходов, установки рентгеноскопии в промышленности и медицине, теплоэнергетические устройства, работающие на угле, и др. Экология: Учеб. для вузов / Н.И. Николайкин, Н.Е. Николайкина, О.П. Мелехова. -- М.: Дрофа, 2004.

Для количественной оценки облучения населения и производственного персонала существуют следующие величины: активность радиоактивного вещества, поглощенная доза, эквивалентная доза, эффективная ожидаемая доза, эффективная доза, коллективная эффективная доза.

Сама радиоактивность непосредственно зависит от вида и энергии излучения, физических свойств облучаемой среды и других факторов. Степень ионизации характеризуется дозой облучения: чем она больше, тем больше ионизация вещества.

В соответствии с этим все население делится на 2 категории:

1. Персонал, непосредственно работающий с источниками излучения;

2. Все население.

Персонал в свою очередь делится на 2 группы: А - работающие с источниками излучения и Б - по условиям работы находящиеся в сфере их воздействия.

Для каждой категории облучаемых лиц установлено 3 класса нормативов: основные дозовые пределы, допустимые уровни и контрольные уровни.

Нормируемые величины

Дозовые пределы, мЗв

Персонал (группа А)

Население

Эффективная доза

20 мЗв/год в среднем за любые последовательные 5 лет, но не более 50 мЗв/год

1 мЗв/год в среднем за любые последовательные 5 лет, но не более 5 мЗв/год

Эквивалентная доза за год в:

хрусталике

150

15

коже

500

50

кистях и стопах

500

50

Превышение допустимых и контрольных уровней является порогом ухудшения радиационной обстановки и сигналом к принятию соответствующих мер безопасности.

Расчетные уровни индивидуального радиационного риска, соответствующие установленным нормами радиационной безопасности пределам доз облучения, представлены далее.

Уровни индивидуального радиационного риска, соответствующие установленным пределам доз.

Категория лиц, подвергающихся облучению

Уровень дозы

Риск соматико-стохастических последствий в год

Риск генетических последствий

в год

Общий риск в год

Персонал

Предел дозы, 0,05 Зв

6,25x10"4

2x10^

8.25Х10"4

Средняя доза при установленном пределе, 0,005 Зв

6,25x10"5

2x105

8,25x10"5

Отдельные лица из населения

Предел дозы, 0,005 Зв

6,25x10"5

2x10"5

8,25x10"5

Средняя доза при установленном пределе, 0,0005 Зв

6,25x10"6

2Х10-6

8,25x10"6

При сочетании внешнего, внутреннего облучения и поступления нескольких радионуклидов в организм должно выполняться условие безопасности, где Д31 - эквивалентная доза 1-го излучения на данный орган; П - поступление у-го радионуклида; ПДД принято использовать следующие параметры: плотность радиоактивного загрязнения почвы по отдельным радионуклидам: 13 Cs, 90Sr и Pu; мощность экспозиционной дозы на расстоянии 1 м от поверхности почвы; эффективная эквивалентная годовая доза облучения населения.

Далее представлены критерии экологического состояния радиоактивно загрязненной территории, определенные, исходя из вышеназванных параметров.

Экологическое состояние

Параметры

Экологическое бедствие

Чрезвычайная экологическая ситуация

Удовлетвори-тельная ситуация

1

Мощность экспозиционной дозы на уровне 1 м от поверхности почвы, мкР/час

Более 400

200^00

До 20

2

Радиоактивное загрязнение, Ки/км2 137Cs 90Sr

Pu (сумма изотопов)

Более 40 Более 3

15-40 1-3 Более 0,1

До1 До 0,3

3

Эффективная доза облучения, мЗв/год

Более 10

5-10

Менее 1

Для обнаружения ионизирующих излучений, измерения их энергии и других свойств применяются дозиметрические приборы.

Основные методы защиты в производственном цикле: защита расстоянием, защита временем, защита экранированием источника излучения и защита количеством. "Защита расстоянием" основана на том, что интенсивность облучения уменьшается пропорционально квадрату расстояния между источником излучения и работающим. "Защита временем" заключается в уменьшении продолжительности контакта человека с источником излучения. "Защита экранированием" - укрытие источника излучения конструкционными материалами, хорошо поглощающими излучение: свинец, железо, бетон, бор - или свинецсодержащее стекло и др. "Защита количеством" заключается в уменьшении мощности источников до минимальных величин.

Средняя облучаемость населения на территории России и стран СНГ в 1,7 раза больше глобальной из-за более высокого естественного и технозависимого фона и воздействия ряда техногенных. Значительная техногенная радиационная нагрузка, помимо технических источников, обусловлена рассеянием радионуклидов в результате ядерных взрывов и аварий, а также наличием плохо изолированных скоплений радиоактивных отходов (РАО), образовавшихся в то время, когда напряженная ядерная гонка сочеталась с незнанием степени риска и с радиологической беспечностью.

На территории России действуют 9 АЭС с реакторами РБМК (чернобыльского типа) и ВВЭР. Проверки, производимые по стандартам международного агентства по атомной энергии (МАГАТЭ), показывают, что станции находятся в удовлетворительном состоянии. Однако специалисты считают, что в ближайшие годы может начаться остановка реакторов, поскольку многие из них уже исчерпали значительную часть своего ресурса. Каждый год на АЭС и других радиационно-опасных объектах случаются инциденты, которые квалифицируются по международной шкале аварий и событий, в основном, как "происшествия" (незначительные, средней тяжести, серьезные).

В связи с вышесказанным одной из наиболее острых экологических проблем в стране - проблема радиоактивных отходов. Об истинных ее масштабах стало известно в 1993 г., когда был составлен государственный регистр мест и объектов добычи, переработки, использования, хранения и захоронения радиоактивных веществ, РАО, источников ионизирующих излучений. Только на предприятиях Минатома России (ПО "Маяк", Сибирский химический комбинат, Красноярский горно-химический комбинат) сосредоточено 600 млн м3 РАО с суммарной активностью 1,5 млрд Ки. На АЭС хранятся 140 тыс. м3 жидких и 8 тыс. м3 отвержденных отходов общей активностью 31 тыс. Ки, а также 120 тыс. м3 излучающих твердых отходов (оборудование, строительный мусор). Ни одна АЭС не имеет полного комплекта установок для подготовки отходов к захоронению. Поставщиками РАО являются также Военно-морской флот (ВМФ), атомный ледокольный флот, судостроительная промышленность, предприятия неядерного цикла (НИИ, промышленные предприятия, медицинские учреждения, учебные заведения).

Наиболее сложная технологическая стадия ядерного топливного цикла - переработка отработавшего ядерного топлива (ОЯТ) и захоронение РАО. На предприятиях Минатома, Минтранса и ВМФ России хранится 7800 т ОЯТ с общей активностью 3,9 млрд Ки. ОЯТ АЭС с реакторами типа РБМК в настоящее время не перерабатывается, а ОЯТ от реакторов ВВЭР транспортируется в специальное хранилище с перспективой последующей переработки на строящемся заводе РТ-2 Горно-химического комбината в г. Железногорске Красноярского края. Однако строительство этого завода вызывает протесты экологической общественности, поскольку существующая технология регенерации ОЯТ связана с образованием большого количества жидких РАО разной степени активности. Наибольшие возражения вызывают предложения о приеме ОЯТ с зарубежных АЭС для временного хранения с целью последующей переработки.

На большей части территории Российской Федерации мощность дозы гамма-излучения на местности соответствует фоновым значениям и колеблется в пределах 10-20 мкР/ч. В результате радиационного обследования городов и населенных пунктов страны выявлены сотни участков локального радиоактивного загрязнения, характеризующихся мощностью дозы от десятков мкР/ч до десятков мР/ч. На этих участках находят утерянные, выброшенные или произвольно захороненные источники ионизирующих излучений различного назначения, изделия со светосоставом, технологические отходы производств и содержащие радионуклиды стройматериалы. Эти загрязнения повышают риск для населения получить опасную дозу облучения в самом неожиданном месте, в том числе и в собственном доме, когда, например, строительные панели становятся источником ионизирующего излучения. Экология. Природа - Человек - Техника: Учебник для вузов. // Акимова Т.А., Кузьмин A.П., Хаскин В.В. - М.: ЮНИТИ-ДАНА, 2001.

Делись добром ;)