2.4. Биогеохимические циклы
В экосистеме происходит постоянный круговорот питательных веществ: питательные вещества из абиотической переходят в биотический компонент под действием энергии солнца, затем возвращаются в виде отходов жизнедеятельности или мертвых организмов. Такой круговорот называют биогеохимическим циклом.
Движущей силой этих круговоротов служит в конечном счете энергия Солнца. Фотосинтезирующие организмы непосредственно используют энергию солнечного света и затем передают ее другим представителям биотического компонента. В итоге создается поток энергии и питательных веществ через экосистему. Необходимо еще отметить, что климатические факторы абиотического компонента, такие, как температура, движение атмосферы, испарение и осадки, тоже регулируются поступлением солнечной энергии.
Солнечная энергия обеспечивает на Земле два круговорота веществ: большой, или геологический (абиотический) и малый, или биологический (биотический).
Большой круговорот.
Большой круговорот наиболее четко проявляется в циркуляции воздушных масс и воды. В основе большого геологического круговорота лежит процесс переноса веществ, в основном минеральных соединений, из одного места в другое в масштабе планеты.
Около 30 % падающей на Землю лучистой энергии расходуется на перемещение воздуха, испарение воды, выветривание горных пород, растворение минералов и т. п. Движение воды и ветра, в свою очередь, приводит к эрозии почв и горных пород, транспорту, перераспределению, осаждению и накоплению механических и химических осадков на суше и в океане. В течение длительного времени образующиеся в море напластования могут возвращаться на поверхность суши, и процессы возобновляются. К этим циклам подключаются вулканическая деятельность, землетрясения и движение океанических плит в земной коре.
Круговорот воды, включающий ее переход из жидкого в газообразное и твердое состояния и обратно, - один из главных компонентов абиотической циркуляции веществ. В процессе гидрологического цикла происходят перераспределение и очистка планетарного запаса воды.
В круговороте воды суммарное испарение компенсируется выпадением осадков. Особенность круговорота в том, что из океана испаряется воды больше - примерно 3,8 геограмма в год (1 геограмм равен 1020 г, или 10 т), чем возвращается с осадками - около 3,4 геограмма в год. На суше, наоборот, осадков выпадает больше - примерно 1,0 геограмм, а суммарно испаряется около 0,6 геограмма ежегодно. Поэтому значительная часть осадков, используемых экосистемами суши, в том числе и агроэкосистемами, производящими пищу для человека, состоит из воды, испаряющейся из моря. Излишки воды с суши стекают в озера и реки, а оттуда снова в океан. По существующим оценкам, в пресных водоемах содержится 0,25 геограмма воды, а годовой сток составляет 0,2 геограмма. Часть пресной воды, возвращающейся в виде осадков, замерзает в ледниках. Таким образом, время оборота пресных вод составляет примерно один год. Разность между количеством осадков, выпадающих на сушу за год (1,0 геограмм), и стоком (0,2 геограмма) составляет 0,8 геограмма, которые испаряются и поступают в подпочвенные водоносные горизонты. Поверхностный сток частично пополняет резервуары грунтовых вод и сам пополняется от них.
С появлением жизни на Земле круговорот воды стал относительно сложным, так как к физическому явлению превращения воды в пар добавился процесс биологического испарения, связанный с жизнедеятельностью организмов, - транспирсщия. Соотношение количества воды, выделившейся в результате транспирации и испарения, меняется в зависимости от местных условий. В тропическом влажном лесу количество воды, испаряемой растениями, более чем в два раза превышает испарение с той же площади растениями саванны, расположенной на той же широте и высоте. Растительность в целом играет значительную роль в испарении воды, влияя тем самым на климат регионов. Она является также водоохранным и водорегулирующим фактором: смягчает паводки, удерживая влагу в почвах и препятствуя их иссушению и эрозии.
Общие запасы воды на Земле оцениваются приблизительно в 1386 млн км3. Соленая вода составляет около 97,5 % от объема водной массы, на мировой океан приходится 96,5 %. Объем пресных вод, по разным оценкам, составляет 35 - 37 млн км3, или 2,5 - 2,7 % от общих запасов воды на Земле. Большая часть пресных вод (68 - 70 %) сосредоточена в ледниках и снежном покрове.
Энергетика гидрологического цикла представлена в виде двух энергетических путей. Движение вверх (испарение) осуществляется за счет солнечной энергии, часть которой вода поглощает. При выпадении осадков она отдает энергию озерам, рекам, заболоченным землям, другим экосистемам и непосредственно человеку, например на ГЭС.
Около трети поступающей солнечной энергии затрачивается на движение воды.
Деятельность человека оказывает огромное влияние на глобальный круговорот воды. В результате покрытия земной поверхности непроницаемыми материалами, строительства оросительных систем, уплотнения пахотных земель, уничтожения лесов и т. п. сток воды в океан увеличивается и пополнение фонда грунтовых вод сокращается.Во многих сухих областях резервуары подземных вод выкачиваются человеком быстрее, чем заполняются. Рост объема поверхностного стока, в свою очередь, увеличивает риск наводнений и усиливает эрозию почв.
Малый круговорот.
На базе большого геологического круговорота возникает круговорот органических веществ, или малый, биологический (биотический) круговорот, В 1927 г. советский ученый В. Р. Вильяме писал: «Из большого, абиотического, круговорота веществ на земном шаре вырывается ряд элементов, которые, постоянно увлекаемые в новый, малый, по сравнению с большим, биологический круговорот, надолго, если не навсегда, вырываются из большого круговорота и вращаются непрерывно расширяющейся спиралью в одном направлении в малом, биологическом, круговороте.
В основе малого круговорота веществ лежат процессы синтеза и разрушения органических соединений. Эти два процесса обеспечивают жизнь и составляют одну из главных ее особенностей.
В отличие от геологического, биологический круговорот характеризуется ничтожным количеством энергии. На создание органического вещества, как уже упоминалось, затрачивается всего около 1 % падающей на Землю лучистой энергии. Однако эта энергия, вовлеченная в биологический круговорот, совершает огромную работу по созиданию живого вещества. Чтобы жизнь продолжала существовать, химические элементы должны постоянно циркулировать из внешней среды в живые организмы и обратно, переходя из протоплазмы одних организмов в усвояемую для других организмов форму.
Иными словами, все химические элементы участвуют и в большом, и в малом круговороте веществ, перемещаясь из неживой среды в живые организмы и обратно, образуя биогеохимические циклы.
Биогеохимические циклы - это более или менее замкнутые пути движения химических элементов в живых организмах («био»), в твердых породах, воздухе и воде («гео»). В круговороте элементов различают две части: резервный фонд - большая небиологическая часть медленно движущихся веществ и обменный фонд - меньшая, но более подвижная часть, которая быстро обменивается между организмами и окружающей их средой. Резервный фонд называют «недоступным», а обменный - «доступным»
Из более чем ста химических элементов, встречающихся в природе, 30 - 40 являются биогенными, т. е. необходимы организмам. Некоторые из них (углерод, водород, кислород, азот, фосфор) нужны организмам в больших количествах - макроэлементы, другие - в малых или даже ничтожных – микроэлементы.
Следует иметь в виду, что циклы с малым объемом резервного фонда более подвержены воздействию человека. Биогеохимические циклы делятся на два типа: с резервным фондом химического элемента в атмосфере и гидросфере и с резервным фондом в земной коре. Главными биогеохимическими циклами, обеспечивающими жизнь на планете (кроме круговорота воды), являются циркуляции углерода, кислорода, азота, фосфора, серы и других биогенных макроэлементов. Рассмотрим некоторые из них.
Циклы газообразных веществ.
Биогеохимические циклы углерода, азота и кислорода - примеры наиболее важных газообразных циклов биогенных веществ. Углерод поступает в биологический круговорот в виде СО2, который усваивается растениями, а азот - в виде газообразного азота N2, который используется азотфиксирующими организмами. Доступные запасы этих газов содержатся в атмосфере.
Биогеохимический цикл углерода.
Циклические процессы массообмена углерода имеют особо важное значение для биосферы. Распределение масс этого элемента следующее. В атмосфере по уточненным данным (Г.В. Войткевич, 1986) находится 2450*109 т углерода. Ежегодная нетто-биопродукция экосферы по С составляет ~ 60 Гт. Такое же количество освобождается в процессах дыхания и деструкции. Период обновления углерода в биосфере 60 лет (для биомассы 10 лет). В океане углерод (помимо его содержания в живых организмах) присутствует в двух главных формах: в составе органического вещества (растворенного в воде и отчасти находящегося в виде взвешенных дисперстных частиц) и в составе взаимосвязанных ионов НСО-3, СО2-3 и СО2.
С углеродом тесно связан весь процесс возникновения и развития биосферы, т.к. именно углерод является основой белковой жизни на нашей планете, т.е. углерод является важнейшим химическим компонентом живого вещества. Именно этот химический элемент, благодаря своей способности образовывать прочные связи между своими атомами, является основой всех органических соединений.
Из атмосферы углерод усваивается автотрофными организмами-продуцентами (растениями, бактериями, цианобионтами) в процессе фотосинтеза, в результате которого, на основе взаимодействия с водой, формируются органические соединения – углеводы. Далее, в результате процессов метаболизма, с участием веществ, поступающих с водными растворами, в организмах синтезируются и более сложные органические вещества. Они не только используются для формирования растительных тканей, но также служат источником питания для организмов, занимающих очередные звенья трофической пирамиды – консументов. Таким образом, по трофическим цепям, углерод переходит в организмы различных животных.
Возвращение углерода в окружающую среду происходит двумя путями. Во-первых – в процессе дыхания. Суть процессов дыхания заключается в использовании организмами окислительных химических реакций, дающих энергию для физиологических процессов. Окисление органических соединений, для которого используется атмосферный или растворённый в воде кислород, имеет результатом разложение сложных органических соединений с образованием СО2 и Н2О. В итоге углерод в составе СО2 возвращается в атмосферу, и одна ветвь круговорота замыкается.
Второй путь возвращения углерода – разложение органического вещества. В условиях биосферы процесс этот в основном протекает в кислородной среде, и конечными продуктами разложения являются те же СО2 и Н2О. Но большая часть углекислого газа при этом не поступает прямо в атмосферу. Углерод, высвобождающийся при разложении органического вещества, в основном остаётся в растворённой форме в почвенных, грунтовых и поверхностных водах. Или в виде растворённого углекислого газа, или же в составе растворённых карбонатных соединений – в форме ионов НСО3- или СО32-. Он может после более или менее продолжительной миграции частично возвращаться в атмосферу, но большая или меньшая его доля всегда осаждается в виде карбонатных солей и связывается в составе литосферы.
Часть атмосферного углерода непосредственно поступает из атмосферы в гидросферу, растворяясь в воде. Главным образом, углекислый газ поглощается из атмосферы, растворяясь в водах Мирового Океана. Сюда же поступает и часть углерода, в тех или иных формах растворённого в водах суши. СО2, растворённый в морской воде, используется морскими организмами на создание карбонатного скелета (раковины, коралловые постройки, панцири иглокожих и т.д.). Он входит в состав пластов карбонатных пород биогенного происхождения, и на более или менее продолжительное время «выпадает» из биосферного круговорота.
В бескислородных средах разложение органического вещества также идёт с формированием в качестве конечного продукта углекислого газа. Здесь окисление протекает за счёт кислорода, заимствуемого из минеральных веществ бактериями-хемосинтетиками. Но процесс в этих условиях идёт медленнее, и разложение органического вещества обычно является неполным. В результате существенная часть углерода остаётся в составе не до конца разложившегося органического вещества и накапливается в толще земной коры в битуминозных илах, торфяниках, углях.
Хранители углерода – это живая биомасса, гумус, известняки и каустобиолиты. Естественными источниками углекислого газа, кроме вулканических эксгаляций, являются процессы разложения органичесекого вещества, дыхание животных и растений, окисление органических веществ в почве и других природных средах. Техногенная углекислота составляет 20х109 т, что пока намного меньше, чем естественное ее поступление в атмосферу. За миллиарды лет с момента появления жизни на Земле весь углерод атмосферы и гидросферы неоднократно прошел через живые организмы. В течение всего 304 лет живые организмы усваивают столько углерода, сколько его содержится в атмосфере. Следовательно, всего за 4 года может полностью обновиться углеродный состав атмосферы, и условно можно считать, что углерод атмосферы за этот срок завершает свой цикл. Цикл углерода, входящего в состав гумуса почв оценивается в 300-400 лет.
Вмешательство человека в круговорот углерода резко возрастает, особенно начиная с 1950-х годов, в результате быстрого роста населения и использования ресурсов, и происходит оно в основном двумя способами:
-
сведение лесов и другой растительности без достаточных лесовосстановительных работ, в связи с чем, уменьшается общее количество растительности, способной поглощать углекислый газ.
-
сжигание углеродсодержащих ископаемых видов топлива и древесины. Образующийся при этом углекислый газ попадает в атмосферу, постепенное возрастание содержания которого, вызывает так называемый «парниковый эффект».
Биогеохимический цикл азота.
Главным постановщиком азота в биосферу являются недра Земли, основным накопителем – атмосфера, точнее – тропосфера. Наряду с N2 в атмосферу систематически поступают другие газообразные соединения азота: NН3-, N2О, NО-, NО2-. Наряду с оксидами азота в атмосфере присутствует восстановленное соединение азота – аммиак. В кислородсодержащей атмосфере он реагирует с оксидами серы и образует кислый сульфат аммония NH4HSO4. Это соединение, так же как нитраты и нитриты, легко вымываются атмосферными осадками.
Основная часть этого элемента, находящаяся в атмосфере в химически неактивной форме N2 , недоступна для главных продуцентов - зеленых растений суши. Но химическая неактивность молекулярного азота не означает его геохимической стабильности. Существуют некоторые виды бактерий, способные активизировать молекулярный азот и связывать его в химические соединения. Этот процесс получил название Фиксации азота. Промышленная фиксация азота идет в присутствии катализаторов при t~500°С и давлении ~300 атм.
В организмах большая часть азота присутствует в форме соединений, в состав которых входит аминогруппа NН2-, или в виде аммония. В процессе биохимической фиксации расщепляется молекула N2 и атомы аммиака. Этот процесс протекает с помощью фермента нитрогеназы. Аммиак и ион NH4+, могут поглощаться корнями растений и как уже отмечено, входить в состав аминокислот. Фиксацию азота осуществляют отдельные специализированные бактерии семейства Azotobacteracea и в определенных условиях синезеленые водоросли. Наиболее продуктивны азотофиксирующие клубеньковые бактерии, образующие симбиозы с бобовыми растениями. Массам азота, фиксируемая из воздуха почвенными бактериями до начала хозяйственной деятельности человека, оценивается разными авторами от 30-40 до 200*106 т/год. В настоящее время к этому добавляется искусственная биологическая фиксация, получаемая при помощи бобовых сельскохозяйственных растений (около 20*109 т/год), а также промышленная фиксация азота из воздуха превысила 60-90*106 т/год.
Цикл – фиксация молекулярного азота – аммонификация мертвого органического вещества – нитрификация – денитрификация имеет наиболее важное значение для глобального массообмена азота, так как этот цикл обеспечивает основной поток азота из его главного резерва – атмосферы.
Часть азота выводится из биологического круговорота и аккумулируется в мертвом органическом веществе. Этот своеобразный запас азота в лесных подстилках, торфе и почвенном гумусе постоянно поддерживается в педосфере и свидетельствует о некоторой заторможенности биологического круговорота.
Промышленная фиксация атмосферного азота – наиболее сильное вмешательство человечества в систему природных глобальных циклов массообмена химических элементов в биосфере. Кроме того, значительное количество азота (около 40*106 т/год) в форме оксидов поступает в атмосферу с выбросами промышленных предприятий и транспорта, образующимися при сжигании минерального топлива, а также в гидросферу с бытовыми и промышленными стоками.
Схема биогеохимического цикла азота представлена на рис. 2.3.
Рис. 2.3 Схема биогеохимического цикла азота
Вмешательство человека в круговорот азота состоит в следующем:
-
при сжигании ископаемого топлива в атмосферу выбрасываются большие количества оксида азота (NO-). Оксид азота затем соединяется в атмосфере с кислородом и образуется диоксид азота (NO2-),который при взаимодействии с водяным паром может образовывать азотную кислоту (HNO3). Эта кислота становится компонентом кислотных осадков.
-
использование удобрений приводит к выделению в атмосферу «парникового газа» закиси азота (N2O)
-
увеличение количества нитратов и ионов аммония в водных экосистемах при смыве с удобрений с полей. Избыток питательных веществ приводит к быстрому росту водорослей, при разложении которых расходуется растворенный кислород, что приводит к массовым морам рыб.
Биогеохимический цикл кислорода
Как Вы помните, кислород – самый распространенный элемент не только земной коры (его кларк 47), но и гидросферы (85,7%), а также живого вещества (70%). Существенную роль этот элемент играет и в составе атмосферы (более 20%). Благодаря исключительно высокой химической активности, кислород играет особо важную роль в биосфере. Он определяет окислительно-восстановительные и щелочно-кислотные условия растворов и расплавов. Для него характерна как ионная, так и неионная форма миграции в растворах.
Эволюция геохимических процессов на Земле сопровождается неуклонным увеличением содержания кислорода. В настоящее время количество кислорода в атмосфере составляет 1,2х1015 тонн. Масштабы продуцирования кислорода зелеными растениями таковы, что это количество могло быть удвоено за 4000 лет. Но этого не происходит, так как в течение года разлагается примерно такое же количество органического вещества, которое образуется в результате фотосинтеза. При этом поглощается почти весь выделившийся кислород. Но благодаря незамкнутости биогеохимического круговорота в связи с тем, что часть органического вещества сохраняется и свободный кислород постепенно накапливается в атмосфере.
Главная «фабрика» по производству кислорода на нашей планете – зеленые растения, хотя в земной коре также протекают разнообразные химические реакциив результате которых выделяется свободный кислород.
Еще один миграционный цикл свободного кислорода связан с массобменом в системе природные воды – тропосфера. В воде океана находится от 3х109 до 10х109 м3 растворенного кислорода. Холодная вода высоких широт поглощает кислород, а, поступая с океаническими течениями в тропики – выделяет его в атмосферу. Поглощение и выделение кислорода происходит и при смене сезонов года, сопровождающихся изменением температуры воды.
Кислород расходуется в громадном количестве окислительных реакций, большинство из которых имеет биохимическую природу. В этих реакциях высвобождается энергия, поглощенная в ходе фотосинтеза. В почвах, илах, водоносных горизонтах развиваются микроорганизмы, использующие кислород для окисления органических соединений. Запасы кислорода на нашей планете огромны. Он входит в состав кристаллических решеток минералов и высвобождается из них живым веществом.
Таким образом, общая схема круговорота кислорода в биосфере складывается из двух ветвей:
-
образование свободного кислорода при фотосинтезе;
-
поглощение кислорода в окислительных реакциях
Согласно расчетам Дж. Уолкера (1980) выделение кислорода растительностью мировой суши составляет 150х1015 тонн в год; выделение фотосинтезирующими организмами океана – 120х1015 тонн в год; поглощение в процессах аэробного дыхания – 210х1015 тонн в год; биологическая нитрификация и другие процессы разложения органического вещества – 70х1015 тонн в год.
В биогеохимическом круговороте можно выделить потоки кислорода между отдельными компонентами биосферы (рис. 2.4).
Рис. 2.4 Схема биогеохимического цикла кислорода
В современных условиях установившиеся в биосфере потоки кислорода нарушаются техногенными миграциями. Многие химические соединения, сбрасываемые промышленными предприятиями в природные воды, связывают растворенный в воде кислород. В атмосферу выбрасывается все большее количество углекислого газа и различных аэрозолей. Загрязнение почв и, особенно, вырубка лесов, а также опустынивание земель на огромных территориях уменьшают производство кислорода растениями суши. Огромное количество атмосферного кислорода расходуется при сжигании топлива. В некоторых промышленно развитых странах кислорода сжигают больше, чем образуется его за счет фотосинтеза.
Биогеохимический цикл фосфора.
Для большинства химических элементов и соединений, которые обычно связаны с литосферой, а не с атмосферой, характерны осадочные циклы. Циркуляция таких элементов осуществляется путем эрозии почв, осадкообразования, горообразования, вулканической деятельности и переноса веществ организмами. Твердые вещества, переносимые по воздуху как пыль, выпадают на землю в виде сухих осадков или с дождем. Осадочные циклы имеют общую направленность «вниз».
Живым сообществам доступны в основном те химические элементы, которые входят в состав пород, расположенных на поверхности Земли. Важным для биосферы элементом, недостаток которого на поверхности ограничивает рост растений, является фосфор.
Человек так изменяет движение многих веществ, участвующих в осадочных циклах, что круговороты их теряют цикличность. В результате в одних местах возникает недостаток, а в других - избыток некоторых веществ. Механизмы, обеспечивающие возвращение химических элементов в круговорот, основаны главным образом на биологических процессах минерализации органических веществ.
Из осадочных циклов наибольшее значение в биосфере имеет круговорот фосфора
Круговорот фосфора в природе сильно отличается от биогеохимических циклов углерода, кислорода, азота и серы, так как газовая форма соединений фосфора (например РН3) практически не участвует в биогеохимическом цикле фосфора. То есть фосфор к накоплению в атмосфере вообще не способен. Поэтому роль «резервуара» фосфора, из которого этот элемент извлекается и используется в биологическом круговороте играет литосфера.
Фосфор в литосфере содержится в форме фосфатных соединений (солей фосфорной кислоты). Основная доля среди них приходится на фосфат кальция – апатит. Это полигенный минерал, образующийся в различных природных процессах – как в глубинных, так и в гипергенных (в том числе и биогенных). Фосфатные соединения способны растворяться в воде, и фосфор в составе иона РО43- может мигрировать в водных растворах. Из них фосфор и усваивается растениями.
Индекс биогенного обогащения почв по отношению к земной коре, а растений по отношению к почвам составляет для фосфора, так же, как и для азота 1000 и 10000 соответственно (Ковда, 1985). Для растений наиболее доступным является фосфор неспецифических органических соединений и гумуса и именно он играет главную роль в малом (локальном) биологическом цикле фосфора.
Животные являются еще большими концентраторами фосфора, чем растения. Многие из них накапливают фосфор в составе тканей мозга, скелета, панцирей.. Есть несколько способов усвоения фосфора организмами-консументами. Во-первых, прямое усвоение из растений в процессе питания. Во-вторых, водные организмы-фильтраторы извлекают фосфор из органических взвесей. В-третьих, органические соединения фосфора усваиваются организмами-илоедами при переработке ими биогенных илов.
Возврат фосфора в окружающую среду происходит при разложении органического вещества. Но возврат этот оказывается далеко не полным. В целом для соединений фосфора характерна тенденция выноса в форме водных растворов и взвесей в конечные водоёмы стока, в наибольшей мере – в Мировой Океан, где он и накапливается в составе осадочных отложений различного генезиса. Вновь вернуться в экзогенный круговорот эта часть фосфора может только в результате тектонических процессов, растягивающихся на сотни миллионов лет. В естественных условиях сохранение баланса обеспечивается сравнительно слабой подвижностью соединений фосфора, в результате которой фосфор, извлечённый растениями из почвы, большей частью возвращается в неё в результате разложения органического вещества. В почвах и породах фосфор достаточно легко фиксируется. Фиксаторами фосфора являются гидроксиды железа, марганца, алюминия, глинистые минералы (особенно, минералы группы каолинита). Однако, фиксированный фосфор может быть на 40-50% десорбирован и использован растениями. Этот процесс зависит от рН и Eh условий среды. Повышенная кислотность, образование угольной кислоты, способствуют десорбции фосфора, усилению миграции фосфорных соединений.
В восстановительной среде образуются соединения фосфора с двухвалентным железом, что тоже способствует выносу фосфора из почвы.
Миграция фосфора возможна и за счет водной и ветровой эрозии. Поэтому биогеохимический цикл фосфора значительно менее замкнут и менее обратим, чем циклы углерода и азота, а загрязнение фосфором окружающей среды особенно опасно (рис. 2.5).
Рис. 2.5. Схема биогеохимического цикла фосфора
Основными особенностями круговорота фосфора, таким образом, являются:
-
отсутствие атмосферного переноса;
-
наличие единственного источника – литосферы;
-
тенденция к накоплению в конечных водоёмах стока.
При интенсивной сельскохозяйственной эксплуатации земель потери фосфора в ландшафте становятся практически необратимыми. Компенсация возможна только за счёт применения фосфорных удобрений. Известно, что фосфорные удобрения являются важным и необходимым звеном в получении высоких урожаев сельскохозяйственных культур. Однако, все известные запасы месторождений фосфатов ограничены и по предсказаниям ученых могут истощиться уже в ближайшие 75-100 лет. В то же время, вредные соединения фосфатов в последнее время становятся одним из важнейших факторов загрязнения речных и озерных вод.
Таким образом, в последе время общая картина распределения им миграции фосфора в биосфере резко нарушена человеком. Вот слагаемые этого явления: во-первых, мобилизация фосфора из агроруд и шлаков, производство и применение фосфорных удобрений, во-вторых производство фосфорсодержащих препаратов и их использование в быту; в-третьих – производство фосфорсодержащих ресурсов продовольствия и кормов, вывоз и потребление их в зонах концентрации населения; в-четвертых – развитие рыбного промысла, добыча морских моллюсков и водорослей, что влечет за собой перераспределение фосфора из океана на сушу. В итоге наблюдается процесс фосфатизации суши, но процесс этот проявляется крайне неравномерно. Увеличивается содержание фосфора в окружающей среде больших городов. Напротив, страны, активно экспортирующие органические продукты и не применяющие фосфорных удобрений, теряют запасы фосфора в своих почвах.
Вмешательство человека в круговорот фосфора сводится в основном к двум вариантам:
-
добыча больших количеств фосфатных руд для производства минеральных удобрений и моющих средств;
-
увеличение избытка фосфат-ионов в водных экосистемах при попадании в них загрязненных стоков с животноводческих ферм, смытых с полей фосфатных удобрений, а также очищенных и неочищенных коммунально-бытовых стоков. Избыток этих элементов способствует «взрывному» росту сине-зеленых водорослей и других водных растений, что нарушает жизненное равновесие в водных экосистемах.
Биогеохимический цикл серы
Сера также является одним из элементов, играющих чрезвычайно важную роль в круговороте веществ биосферы. Она относится к числу химических элементов, наиболее необходимых для живых организмов. В частности, она является компонентом аминокислот. Она предопределяет важные биохимические процессы живой клетки, является незаменимым компонентом питания растений и микрофлоры. Соединения серы участвуют в формировании химического состава почв, в значительных количествах присутствуют в подземных водах, что играет решающую роль в процессах засоления почв.
Содержание серы в земной коре составляет 4,7х10-2%, в почве – 8,5х10-2%, в океане – 8,8х10-2% (Виноградов, 1962). Однако, в засоленных почвах содержание серы может достигать значений, измеряемых целыми процентами. Таким образом, основным резервуаром, из которого она черпается живыми организмами, является литосфера. Это обусловлено тем, что устойчивое существование сернистых соединений в условиях современной атмосферы Земли, содержащей свободный кислород и пары Н2О, невозможно. Сероводород (H2S) в кислородной среде окисляется, а кислородные соединения серы, реагируя с Н2О, образуют серную кислоту H2SO4, которая выпадает на поверхность Земли в составе кислотных дождей. Поэтому оксиды серы SOх, хотя и могут усваиваться растениями непосредственно из атмосферы, существенной роли в круговороте серы этот процесс не играет.
Сера имеет несколько изотопов, из которых в природных соединениях наиболее распространены S32 (>95%) и S34 (4,18%). В результате биологических и биогеохимических процессов происходит изменение в соотношении этих изотопов в сторону увеличения содержаний более легкого изотопа в верхних гумусовых горизонтах почв.
Изотопный состав серы подземных, почвенно-грунтовых вод и водорастворимых сульфатов из горизонта С сульфатно-содовых солончаков является сходным.
В составе земной коры соединения серы существуют, в основном, в двух минеральных формах: сульфидной (соли сероводородной кислоты) и сульфатной (соли серной кислоты). Редко встречается самородная сера, которая неустойчива и склонна, в зависимости, от значений окислительно-восстановительного потенциала среды, формировать или кислородные, или водородные соединения.
Первичной, глубинной по происхождению, минеральной формой нахождения серы в земной коре, является сульфидная. Сульфидные соединения в условиях биосферы практически нерастворимы, и потому сульфидная сера растениями не усваивается. Но, в то же время, сульфиды в кислородной среде неустойчивы. Поэтому сульфиды на земной поверхности, как правило, окисляются, и в результате этого сера входит в состав сульфатных соединений. Сульфатные соли обладают достаточно хорошей растворимостью, и сера в географической оболочке активно мигрирует в водных растворах в составе сульфат-иона SO42-.
Именно в этой, сульфатной форме сера, в составе водных растворов, эффективно усваивается растениями, а далее – животными организмами. Усвоению способствует то, что сульфатные соединения серы способны накапливаться в почвах, участвуя в процессах обменной сорбции и входя при этом в состав почвенного поглощающего комплекса (ППК).
Разложение органического вещества в кислородной среде приводит к возвращению серы в почву и природные воды. Сульфатная сера мигрирует в водных растворах, и может снова использоваться растениями. Если же разложение идёт в бескислородной среде, ведущую роль играет деятельность серобактерий, которые восстанавливают SO42- до H2S. Сероводород выделяется в атмосферу, где окисляется и возвращается в другие компоненты биосферы в сульфатной форме. Часть серы в восстановительной обстановке может связываться в сульфидных соединениях, которые, при возобновлении доступа кислорода, снова окисляются и переходят в сульфатную форму.
Биогеохимический цикл серы состоит из 4 стадий (рис. 2.6 ):
-
усвоение соединений серы живыми организмами (растениями и бактериями) и включение серы в состав белков и аминокислот.
-
Превращение органической серы живыми организмами (животными и бактериями) в конечный продукт – сероводород.
-
Окисление минеральной серы живыми организмами (серобактериями, тионовыми бактериями) в процессе сульфатредукции. На этой стадии происходит окисление сероводорода, элементарной серы, ее тио- и тетрасоединений.
-
Восстановление минеральной серы живыми организмами (бактериями) в процессе десульфофикации до сероводорода. Таким образом, важнейшим звеном всего биогеохимического цикла серы в биосфере является биогенное образование сероводорода.
Рис. 2.6. Схема биогеохимического цикла серы
Изъятие серы из биосферного круговорота происходит в результате накопления сульфатных отложений (в основном гипсовых), слои и линзы которых становятся компонентами литосферы. Компенсируются потери во-первых, в процессах вулканизма (поступление H2S и SOx в атмосферу, а оттуда, с атмосферными осадками – на поверхность Земли). А во-вторых, в результате деятельности термальных вод, с которыми в верхние горизонты земной коры и на дно Мирового океана поступают сульфидные соединения.
Таким образом, к характерным особенностям круговорота серы можно отнести второстепенную роль процессов атмосферной миграции, а также многообразие форм нахождения, обусловленное переходом её из сульфидных форм в сульфатные и обратно, в зависимости от изменения окислительно-восстановительных условий.
Промышленные процессы выносят в атмосферу большое количество серы. В отдельных случаях значительная концентрация соединений серы в воздухе служит причиной нарушений в окружающей среде, в том числе, кислотных дождей. Присутствие в воздухе двуокиси серы негативно влияет как на высшие растения, так и на лишайники, причем эпифитные лишайники могут служить индикаторами повышенных содержаний серы в воздухе. Лишайники поглощают влагу из атмосферы всем слоевищем, поэтому концентрация серы в них быстро достигает предельно допустимого уровня, что ведет к гибели организмов.
Поступление серы в общий круговорот по данным Дж. П. Френда (1976) следующее:
При дегазации земной коры – 12х1012 г/год; при выветривании осадочных пород – 42х1012 г/год,; антропогенные поступления в виде сернистого газа – 65х1012 г/год, что в сумме составляет 119х1012 г/год. Значительные количества серы ежегодно консервируются в виде сульфидов и сульфатов – 100х1012 г/год и , таким образом., временно выводятся из общего биогеохимического круговорота.
Таким образом, антропогенное поступление серы в биосферу существенно изменяет круговорот этого элемента, а приход серы в биосферу превышает ее расход, в результате чего, должно происходить постепенное ее накопление.
КОНТРОЛЬНЫЕ ВОПРОСЫ
-
Какой русский ученый внес наибольший вклад в изучение биосферы?
-
Как называется совокупность живых организмов по Вернадскому?
-
Что такое ноосфера?
-
Каким образом атмосферный азот становится частью живой материи?
-
Как по Вернадскому называется материя, образованная без участия живых организмов?
-
Чем различаются большой и малый круговороты вещест?
-
Какова основная особенность круговорота воды?
-
Как влияет человек на круговорот воды?
-
В чем различие газообразных и осадочных биогеохимических циклов?
-
Как влияет человек на круговорот углерода?
-
Как влияет человек на круговорот азота?
-
Как влияет человек на круговорот фосфора?
- Содержание
- 1. Предмет и задачи экологии
- 1.1 История развития экологии как науки.
- 1.2 Предмет, структура и задачи экологии
- Смертность – гибель особей в популяции.
- 2. Биосфера. Учение вернадского
- 2.1. Понятие о биосфере
- 2.2. Структура биосферы.
- 2.3. Этапы развития биосферы. Ноосфера
- 2.4. Биогеохимические циклы
- 3. Экологическая система
- 3.1 Структура и свойства экосистемы
- 3.2 Пищевые цепи. Трофические уровни
- 3.3. Энергетика и продукция экосистемы
- 3.4. Динамические процессы в экосистеме
- 3.4. Примеры экосистем
- 4.Экологические факторы
- 4.1. Классификация экологических факторов.
- 4.2 Абиотические факторы.
- Абиотические факторы почвенного покрова
- 4.3 Биотические факторы
- 4.4 Экологическая пластичность. Понятие о лимитирующем факторе
- 5. Влияние загрязнения на здоровье человека
- 5.1 Характер воздействия загрязнения на здоровье человека:
- 5.2 Эколого-зависимые заболевания
- 5.3 Действие основных загрязняющих веществ на организм человека
- 5.4 Влияние вредных производственных факторов (шум, вибрация, ультразвук) на здоровье человека
- 6. Глобальные проблемы окружающей среды
- 7. Рациональное использование природных ресурсов
- 7.1 Классификация природных ресурсов
- 7.2 Рациональное природопользование
- 7.3 Стратегия устойчивого развития
- 8. Антропогенное воздействие на биосферу. Загрязнение окружающей среды
- 8.1 Загрязнение окружающей среды
- 8.2 Антропогенное воздействие на атмосферу. Источники загрязнения атмосферного воздуха
- 8.3 Загрязнение гидросферы. Производственные сточные воды.
- 8.4 Загрязнение окружающей среды отходами производства и потребления
- 8.5 Энергетические загрязнения
- 8.6 Биологическое загрязнение
- 9. Очистка газовых выбросов
- 9.1 Механические методы очистки отходящих газов
- Механические («сухие») пылеуловители
- 9.2 Физико-химические методы очистки газовых выбросов
- Электрофильтры
- Аппараты мокрого пылегазоулавливания
- Скрубберы (газопромыватели).
- Очистка сточных вод
- 10.1 Механические методы очистки сточных вод
- Удаление взвешенных частиц под действием центробежных сил
- Очистка сточных вод от мелкодисперсных примесей и маслопримесей методом флотации
- 10.2 Физико-химические методы очистки сточных вод (Очистка сточных вод от растворимых примесей).
- 10.3 Биологические методы очистки сточных вод
- Антропогенное воздействие на литосферу
- 11.2 Воздействия на горные породы и их массивы
- 11.3 Воздействия на недра
- 11.4 Защита литосферы
- Управление отходами. Переработка отходов
- 12.1 Стратегия обращения с отходами
- 12.2 Обращение с отходами в Российской Федерации
- 12.3 Переработка промышленных отходов.
- 13. Экологическое и санитарно-гигиеническое нормирование
- Нормативы качества окружающей среды.
- 13.2 Нормативы предельно допустимого вредного воздействия на состояние окружающей среды
- 13. 3. Нормативы использования природных ресурсов.
- 13. 4. Экологические стандарты
- 13. 5. Нормативы санитарных и защитных зон
- 14. Экологический мониторинг
- 14.1 Понятие экологического мониторинга. Классификация
- 14.2 Оценка фактического состояния окружающей среды
- Ориентировочная оценочная шкала опасности загрязнения почвы по суммарному показателю представлена в табл. 14.3.
- 15. Международное сотрудничество в области охраны окружающей среды
- 15.1 Международные объекты охраны окружающей среды
- 15.2 Международные организации
- 15.3 Конференции и соглашения
- 15.4 Участие Росси в международном сотрудничестве
- 16 Экологическое право…………………………………
- 16.1. Источники экологического права
- 16.2. Государственные органы охраны окружающей природной среды
- 16.3. Экологическая стандартизация и паспортизация
- 16.4. Экологическая экспертиза
- 16.5. Понятие об экологическом риске
- 17 Экономика природопользования…………………..
- 17.1 Плата за пользование природными ресурсами и загрязнение окружающей среды
- 17.2 Оценка экологических ущербов