2.4. Гипотеза де Бройля о корпускулярно-волновом дуализме свойств частиц
Французский ученый Луи де Бройль (1892–1987) в 1924 г. в докторской диссертации «Исследования по теории квантов» выдвинул смелую гипотезу об универсальности корпускулярно-волнового дуализма, утверждая, что поскольку свет ведет себя в одних случаях как волна, а в других – как частица, то и материальные частицы (электроны и др.) в силу общности законов природы должны обладать волновыми свойствами. «В оптике, – писал он, – в течение столетия слишком пренебрегали корпускулярным способом рассмотрения по сравнению с волновым; не делалась ли в теории вещества обратная ошибка? Не думали ли мы слишком много о картине «частиц» и не пренебрегали ли чрезмерной картиной волн?» В то время гипотеза де Бройля выглядела безумной. Лишь в 1927 г., три года спустя, наука пережила огромное потрясение: физики К. Дэвиссон и Л. Джермер экспериментально подтвердили гипотезу де Бройля, получив дифракционную картину электронов.
Согласно квантовой теории света А. Эйнштейна, волновые характеристики фотонов света (частота колебаний v и длина волна л = c/v) связаны с корпускулярными характеристиками (энергией εф, релятивистской массой mф и импульсом рф.
По идее де Бройля, любая микрочастица, в том числе и с массой покоя ш0Ц 0, должна обладать не только корпускулярными, но и волновыми свойствами.
Таким образом, соотношения Эйнштейна, полученные им при построении теории фотонов в результате гипотезы, выдвинутой де Бройлем, приобрели универсальный характер и стали одинаково применимыми как для анализа корпускулярных свойств света, так и при исследовании волновых свойств всех микрочастиц.
- Тема 1. Лекция
- 1.1. Наука. Функции науки
- 1.2. Естествознание – комплекс наук о природе
- 1.3. Методы естественнонаучных исследований
- Тема 2. Лекция
- 2.1. Материя и ее свойства
- 2.2. Фундаментальные взаимодействия
- Характеристики фундаментальных взаимодействий
- 2.3. Тепловое излучение. Рождение квантовых представлений
- 2.4. Гипотеза де Бройля о корпускулярно-волновом дуализме свойств частиц
- 2.5. Опыты Резерфорда. Модель атома Резерфорда
- 2.6. Теория Бора для атома водорода. Постулаты Бора
- 2.7. Атом водорода в квантовой механике
- 2.8. Многоэлектронный атом. Принцип Паули
- 2.9. Квантово-механическое обоснование Периодического закона д. И. Менделеева
- 2.10. Основные понятия ядерной физики
- 2.11. Радиоактивность
- Тема 3. Лекция
- 3.1. Ньютоновская концепция абсолютного пространства и времени. Законы движения
- 3.2. Законы сохранения
- 3.3. Принципы современной физики
- 3.4. Понятие о состоянии системы. Лапласовский детерминизм
- 3.5. Специальная теория относительности (сто)
- 3.6. Начала термодинамики. Представления об энтропии
- Тема 4. Лекция
- 4.1. Химия как наука. Краткая историческая справка. Проблемы и перспективы современной химии
- 4.2. Химический элемент. Строение атома. Периодический закон
- 4.3. Химическое соединение, химическая связь
- 4.4. Химическая реакция, ее скорость, кинетика и катализ, биокатализаторы
- 4.5. Взаимосвязь химического строения и структуры неорганических и органических соединений
- 4.6. Эволюционная химия – отбор химических элементов во Вселенной
- 4.7. Концептуальные системы химических знаний
- Тема 5. Лекция
- Определения и терминология
- Тема 6. Лекция
- 6.1. Общие представления о Вселенной
- 6.2. Галактики
- 6.3. Звезды
- 6.4. Солнечная система
- Тема 7. Лекция
- 7.1. Форма и размеры Земли
- 7.2. Космические ритмы
- 7.3. Зональные комплексы
- 7.4. Комплексные природные зоны
- 7.5. Понятие о литосфере
- 7.6. Геологическое летосчисление
- Геохронологическая шкала
- 7.7. Рельефообразующие процессы
- Описание разрушений во время землетрясения и их соответствие баллам по шкалам Меркалли и Рихтера
- 7.8. Основные формы рельефа Земли
- Классификация форм рельефа по их размерам
- 7.9. Минеральные ресурсы литосферы
- Залежи полезных ископаемых в зависимости от строения и возврата участка земной коры и форм рельефа
- 7.10. Гидросфера
- 7.11. Атмосфера
- 7.12. Общие представления о географической оболочке
- Тема 8. Лекция
- 8.1. Электромагнитные взаимодействия как определяющие химический и биологический уровень организации материи
- 8.2. Симметрия и асимметрия в природе
- 8.3. Самоорганизация природы (понятие синергетики)
- 8.4. Основные свойства самоорганизующихся систем Открытые системы
- 8.5. Представление о жизни в современном естествознании
- 8.6. Структурные уровни организации живой материи
- Обзор царств организмов и некоторых важных подгрупп (по 3. Брему и и. Мейнке, 1999)
- 8.7. Гипотезы происхождения жизни
- 8.8. Физико-химические предпосылки для зарождения жизни на Земле
- 8.9. Теории эволюции органического мира Начальные этапы биологической эволюции
- Возникновение и распространение организмов в истории Земли (по з. Брему и и. Мейнке, 1999 г.)
- 8.10. Основы генетики История возникновения генетики
- Тема 9. Лекция
- 9.1. Биосфера, ее структура и функции
- 9.2. Живое вещество как системообразующий фактор биосферы
- 9.3. Биосфера – экосистема планетарного масштаба
- 9.4. Принципы устройства биосферы
- 9.5. Превращение биосферы в ноосферу
- Тема 10. Лекция
- 10.1. Происхождение человека
- 10.2. Сходство и отличие человека и животных
- 10.3. Стадии эволюции человека
- 10.4. Соотношение биологического и социального в человеке
- 10.5. Здоровье человека. Демографические проблемы
- 10.6. Работоспособность и творчество
- Тема 11. Лекция
- 11.1. Задачи, методы экологии как науки
- 11.2. Среды жизни, экологические факторы
- Сравнительная характеристика сред жизни и адаптации к ним живых организмов
- 11.3. Современные экологические проблемы
- 11.4. Загрязнение окружающей среды
- 11.5. Влияние неблагоприятных экологических факторов на состояние здоровья человека
- 11.6. Международное сотрудничество в области охраны окружающей среды
- 11.7. Экологическое образование