logo
Анализ химического состава р. Самара в районе с. Вербки

3. Построение линий и уравнений регрессий

Метод наименьших квадратов в двумерном пространстве. Уравнение регрессии

Процедура линейного парного регрессионного анализа выполняется на ЭВМ. Для графического изображения пар наблюдений в виде экспериментальных точек с координатами х;у на плоскости применяется система декартовых координат.

Задача линейного регрессионного анализа (метода наименьших квадратов) состоит в том, чтобы, зная положение точек на плоскости, так провести линию регрессии, чтобы сумма квадратов отклонений Д вдоль оси Оу (ординаты) этих точек U от проведенной прямой была минимальной.

Для проведения вычислений по классическому методу наименьших квадратов (для проведения регрессионного анализа) к выдвигаемой гипотезе (к форме уравнения регрессии) предъявляется такое требование: это уравнение должно быть линейным по параметрам или допускать возможность линеаризации.

Уравнение прямой на плоскости в декартовых координатах:

у = b + ax

где b ,a - постоянные числа, геометрическая интерпретация которых дана ниже. Учитывая это, задачу метода наименьших квадратов аналитически можно выразить следующим образом:

U = ,

где =Дi, или

U =

Эти формулы можно выразить так: сумма квадратов отклонений вдоль оси Оу должна быть минимальной (принцип Лежандра).

Для решения задачи, поставленной в формуле, необходимо в каждом конкретном случае вычислить значения коэффициентов a и b , минимизирующие сумму отклонений U. Для этого, как известно из математического анализа, необходимо вычислить частные производные функции U по коэффициентам a и b и приравнять их к нулю.

Получаем формулы b и a:

,

.

Геометрическая интерпретация коэффициентов регрессии.

Коэффициент b (свободный член уравнения регрессии) геометрически представляет собой расстояние от начала координат до точки пересечения линии регрессии с ординатой или, это отрезок, отсекаемый на ординате линией регрессии.

Коэффициент b1 представляет собой тангенс угла наклона линии регрессии к оси абсцисс: tga = 0,53; a = 27є55ґ. Линия регрессии проводится через «облако» точек, соблюдая принцип Лежандра. Положение линии в системе координат на плоскости полностью определяется коэффициентами a и b.

Различают два вида связи: функциональная и стохастическая. Линейная функциональная связь в данном случае имела бы место, если бы все точки располагались на прямой регрессии. При наличие погрешностей измерения связь между у и х является стохастической (вероятностной).

Парная корреляция. Статистическое оценивание парной корреляции и регрессии

Существует две модели регрессии. Условно можно модель назвать прямой регрессией, а модель - обратной. Это означает, что уравнение не является алгебраическим, из которого непосредственно можно найти х, так как эта модель получена минимизацией суммы квадратов отклонений вдоль оси Оу.

Формулы для вычисления коэффициентов a и b в случае обратной регрессии:

,

.

Коэффициент парной корреляции:

.

3.1 Линейная зависимость между минерализацией и хлоридом

Построим линии и уравнения регрессий для графика зависимости минерализации от содержания хлоридов

Строим линию регрессий зависимости минерализации от содержания хлоридов.

Рис.7 Линия регрессии зависимости минерализации от содержания хлоридов

Зависимость между минерализацией и содержания хлоридов в ш.Юбилейная, отображена в виде линии, представленной уравнением y=-1,773*x+1092,54. Также построено обратное уравнение x=-0,3952*y=169,73, линия отображена на графике (Рис. 7).