5 Дозы облучения населения от источников искусственной радиации
Примерно 2/3 эффективной эквивалентной дозы внутреннего облучения, получаемой человеком от естественных источников радиации, обусловливают радиоактивные вещества, попадающие в организм с пищей, водой и воздухом. Космогенные радионуклиды (углерод-14 и тритий) создают небольшую часть этой дозы, основная часть приходится на источники земного происхождения. Калий-40 усваивается организмом человека вместе со своими стабильными изотопами, он дает около 180 мЗв/год. В наибольшей степени дозу внутреннего облучения человека формируют радионуклиды ряда урана-238 и, в меньшей степени, тория-232. Свинец-210 и полоний-210 поступают в организм с пищей (они накапливаются в море-продуктах - в рыбе и моллюсках, а также в тканях северных оленей). Доза внутреннего облучения человека, питающегося таким белком, может превышать среднее значение в 35 раз. Население, проживающее в районах с повышенной концентрацией урана (Западная Австралия), питающееся мясом овец и кенгуру, получает дозы, в 75 раз превосходящие средний уровень планеты.
Радиоактивность атмосферы обусловлена наличием в ней радиоактивных веществ в газообразном состоянии (радон, торон, 14C, тритий) или в виде аэрозолей (40K, уран, радий и др.). Радон и торон поступают из земных пород, а углерод и тритий образуются из атомов азота и водорода в результате воздействия на их ядра нейтронов вторичного космического излучения.
Суммарная радиоактивность атмосферного воздуха колеблется в широких пределах - 7,4 . 10-4 - 16,3 . 10-3Бк/л (2 . 10-14 - 4,4 . 10-13Ки/л) и зависит от места, времени года, погодных условий и от состояния магнитного поля Земли.
Радиоактивность природной воде придают в основном U, Th и Ra, образующие растворимые комплексные соединения, которые вымываются почвенными водами, а также газообразные продукты их радиоактивных превращений — радон и торон. Концентрация радиоактивных элементов в реках меньше, чем в морях и озерах, а содержание их в пресноводных источниках зависит от типа горных пород, климатических факторов, рельефа местности и т. д. Так, наличие радона в водах кислых магматических пород в несколько раз выше, чем осадочных пород. Концентрация урана в реках, протекающих на юге, обычно выше, чем в северных реках. Наиболее значительным содержанием радиоактивных элементов характеризуются воды урановых месторождений и минеральные (Виноградов, 1957 г.). В минеральных водах Кавказа содержание радия не превышает 277,5 Бк/л (7,5 . 10-9Ки/л), радона - 962 Бк/л (2,6 . 10-8Ки/л). Количество 40K в водах рек и озер примерно соответствует содержанию радия: в реках 0,274 Бк/л (7,7 . 10-12Ки/л), в озерах 0,431 Бк/л (1,3 . 10-11Ки/л).
Из естественных радиоактивных веществ, содержащихся в растениях, наибольшая удельная активность 40K, которая составляет 44,4 - 370 Бк/кг (1,2 . 10-9 - 10-8 Ки/кг). Это относится особенно к бобовым растениям — гороху, бобам, фасоли, сое. Содержание в растениях урана, радия, тория и 14С ничтожно мало.
В животных организмах обычно содержится 40K меньше, чем в растениях.
Уран, торий и 14С встречаются в биологических объектах в очень незначительных концентрациях по сравнению с 40K.
Наиболее сильным из всех естественных источников радиации является газ радон (невидимый, не имеющий вкуса и запаха). Он составляет с дочерними продуктами распада примерно 3/4 годовой индивидуальной эффективной эквивалентной дозы, получаемой населением от земных источников радиации, и около 1/2 дозы от всех естественных источников радиации. Основную часть этой дозы человек получает в непроветриваемых помещениях, закрытых помещениях с вдыхаемым воздухом. В географических регионах с умеренным климатом концентрация радона может быть в 8 раз выше в закрытых помещениях, чем в атмосферном воздухе.
В конце 1970-х гг. в Швеции и Финляндии были обнаружены строения, внутри которых концентрация радона в 5 тыс. раз превышала среднюю его концентрацию в наружном воздухе. Строительные материалы, такие как дерево, кирпич и бетон выделяют незначительное количество радона. Большей удельной радиоактивностью обладают гранит и пемза.
Радон также может поступать в жилые помещения с природным газом, водой (концентрация чрезвычайно велика в воде из глубоких колодцев, артезианских скважин, наибольшая зарегистрированная удельная радиоактивность воды в системах водоснабжения составляет 100 млн Бк/м3.). Радон в значительной степени улетучивается при кипячении воды. Основную опасность представляет попадание в легкие воздуха, содержащего пары воды с растворенным радоном. В процессах переработки и хранения природного газа большая часть радона улетучивается. Концентрация радона в помещении заметно возрастает, если кухонные газовые плиты не снабжены вытяжкой. Доля домов, внутри которых концентрация радона и его дочерних продуктов составляет 1- 10 тыс. Бк/м3, в различных странах колеблется от 0,01 до 0,1 %. Эффективная эквивалентная доза от воздействия радона и его дочерних продуктов составляет в среднем около 1 мЗв/год, т. е. около 1/2 всей годовой дозы, получаемой человеком в среднем от всех естественных источников радиации.
Уголь содержит меньше радионуклидов, чем земная кора. В процессе сжигания угля его минеральные компоненты спекаются в шлак и золу, в которые попадают радиоактивные вещества. Основная часть угольной золы и шлака хранятся на золоотвалах большой площади (до1000 га). Более легкая зольная пыль (размером менее 0,08 мм) выносится тягой в трубу электростанций, проскакивает через электрофильтры. Каждый ГВт-год электроэнергии обходится человечеству в 2 чел-Зв ожидаемой коллективной эффективной эквивалентной дозы. Так, сжигание угля в 1979 г. в домах планеты повысило ожидаемую коллективную эффективную эквивалентную дозу облучения населения Земли на 100 тыс. чел-Зв.
Источником естественной радиации являются также термальные водоемы (подземные резервуары пара и горячей воды). Их в некоторых странах используют для производства электроэнергии и отопления домов. Измерения эмиссии радона на двух электростанциях в Италии показали, что на каждый ГВт-год вырабатываемой ими электроэнергии приходится ожидаемая эффективная эквивалентная доза 6 чел-Зв. Так как суммарная мощность энергетических установок, работающих на геотермальных источниках, невелика и составляет 0,1 % мировой энергомощности, то геотермальная энергетика вносит ничтожный вклад в облучение населения.
Большинство разрабатываемых в настоящее время фосфатных месторождений (используются главным образом для производства удобрений) содержат уран. В процессе добычи и переработки руды выделяется радон. Удобрение также содержит радиоактивные радиоизотопы, которые из удобренной почвы поступают в сельскохозяйственные культуры. Это радиоактивное загрязнение незначительно, оно возрастает при внесении удобрений в почву в жидком виде или при скармливании скоту содержащих фосфаты веществ. Фосфатов дают за год ожидаемую эффективную эквивалентную дозу примерно 6 тыс. чел-Зв, а доза, образующаяся в результате применения фосфогипса составляет около 300 тыс. чел-Зв.
Высокой радиоактивностью обладают строительные материалы, полученные из отходов производства алюминия (кирпич из красной глины), отходов черной металлургии (доменный шлак), отходов угольных электростанций (зола), как побочные продукты переработки фосфорных руд - кальцийсиликатный шлак (используют при производстве бетона) и фосфогипс (используют при изготовлении строительных блоков, сухой штукатурки, перегородок и цемента), их использовали в строительстве в США и Канаде.
Так как земные породы используют в качестве строительного материала, то от последнего зависит гамма-радиация внутри зданий. Наибольшие значения гамма-радиации установлены в домах из железобетона с глиноземом - 1,71 мГр/год, наименьшие - в деревянных домах - 0,5 Гр/год (Sievert и др., 1952, 1957 гг.).
В России предельно допустимые уровни ионизирующего облучения и принципы радиационной безопасности регламентируются «Нормами радиационной безопасности» (НРБ-99), «Основными санитарными правилами работы с радиоактивными веществами и другими источниками ионизирующих излучений» ОСП 72-80. В соответствии с этими нормативными документами нормы облучения установлены для следующих трех категорий лиц:
категория А — персонал, постоянно или временно работающий с источниками ионизирующих излучений;
категория Б — ограниченная часть населения, которая по условиям размещения рабочих мест или по условиям проживания может подвергаться воздействию источников излучения;
категория В — население страны, республики, края и области.
Для лиц категории А основным дозовым пределом является индивидуальная эквивалентная доза внешнего и внутреннего излучения за год (Зв/год) в зависимости от радиочувствительности органов (критические органы). Это предельно допустимая доза (ПДД) — наибольшее значение индивидуальной эквивалентной дозы за год, которое при равномерном воздействии в течение 50 лет не вызовет в состоянии здоровья персонала неблагоприятных изменений, обнаруживаемых современными методами.
Для персонала категории А индивидуальная эквивалентная доза (Н, Зв), накопленная в критическом органе за время Т (лет) с начала профессиональной работы, не должна превышать значения, определяемого по формуле
Н = ПДД × Т.
Кроме того, доза, накопленная к 30 годам, не должна превышать 12 ПДД.
Для категории Б установлен предел дозы за год (ПД, Зв/год), под которым понимают наибольшее среднее значение индивидуальной эквивалентной дозы за календарный год у критической группы лиц, при котором равномерное облучение в течение 70 лет не может вызвать в состоянии здоровья неблагоприятных изменений, обнаруживаемых современными методами. В таблице 4 приведены основные дозовые пределы внешнего и внутреннего облучений в зависимости от радиочувствительности органов.
Таблица 4 - Основные значения дозовых пределов внешнего и внутреннего облучений
Группа критических органов | Органы и ткани организма человека | ПДД для категории А, Зв/год | ПДД для категории Б, Зв/год |
1 | Все тело, гонады (половые органы), красный костный мозг | 0,05 | 0,005 |
2 | Любой отдельный орган, кроме гонад, красного костного мозга, костной ткани, щитовидной железы, кожи, кистей, предплечий, лодыжек и стоп | 0,15 | 0,015 |
3 | Костная ткань, щитовидная железа, кожный покров, кисти, предплечья, лодыжки и стопы | 0,30 | 0,03 |
- «Изучение радиоактивности портативным прибором рксб-104»
- 1. Общие сведения о радиации
- 1.1 Естественная и искусственная радиоактивность
- 1.2 Виды радиоактивных излучений
- 1.3 Единицы измерения активности, дозы излучения
- 1.4 Принцип расчета доз при внутреннем (инкорпированном) облучении
- 2. Основы радиоэкологии
- 2.1 Некорневое поступление радионуклидов в сельскохозяйственные культуры и передача их по трофическим цепям
- 2.2 Радиоактивное загрязнение лесных фитоценозов
- 3.1 Критерии обеспечения радиационной безопасности
- 3.2 Требования к проектированию и эксплуатации систем сбора, хранения и захоронения производственных отходов с повышенным содержанием природных радионуклидов
- 3.3 Радиационно-гигиенические требования по реабилитации территорий при прекращении эксплуатации предприятий нгк
- 3.4 Производственный радиационный контроль при обращении с производственными отходами с повышенным содержанием природных радионуклидов
- 3.5 Вычисление эффективной удельной активности природных радионуклидов в производственных отходах
- 3.6 Требования к радиационно-гигиенической паспортизации организаций нгк
- 4 Рабочее задание 1. Защита от ионизирующих излучений с помощью защитных экранов
- 5 Дозы облучения населения от источников искусственной радиации
- 6 Устройство дозиметра и радиометра рксб-104
- 6.1 Назначение прибора
- 6.2 Основные технические данные и характеристики прибора
- 6.3 Устройство и принцип работы
- 6.4 Указание мер безопасности
- 6.5 Подготовка к работе
- 6.6 Порядок работы
- 7 Рабочее задание 2
- 7.1 Выполнение измерений
- 8 Рабочее задание 3
- Контрольные вопросы
- Список литературы