logo search
Общая экология ИЗОС Попова

Глава V. Учение о биосфере (глобальная экология)

Биосфера и ее границы. Функции живого вещества

Самым высоким уровнем организации жизни на планете Земля является биосфера. Этот термин был введен в 1875 году. Впервые его использовал австрийский геолог Э.Зюсс. Однако учение о биосфере как биологической системе появилось в 20-е годы нынешнего столетия, автором его является советский ученый В.И.Вернадский. Биосфера - это та оболочка Земли, в которой существовали и существуют живые организмы и в образовании которой они играли и играют основную роль. Биосфера имеет свои границы, обусловленные распространением жизни. В.И.Вернадский в биосфере выделял три сферы жизни:

  1. Атмосфера - это газообразная оболочка Земли. Она не вся заселена жизнью, ее распространению препятствует ультрафиолетовая радиация. Граница биосферы в атмосфере находится на высоте примерно 25-27 км, где располагается озоновый слой, поглощающий около 99% ультрафиолетовых лучей. Наиболее заселенным является приземный слой атмосферы (1-1,5 км, а в горах до 6 км над уровнем моря).

  2. Литосфера - это твердая оболочка Земли. Она также заселена живыми организмами не полностью. Распространение жизни здесь ограничено температурой, которая постепенно возрастает с глубиной и при достижении 1007С вызывает переход воды из жидкого в газообразное состояние. Максимальная глубина, на которой обнаружены живые организмы в литосфере, составляет 4 - 4,5 км. Это и есть граница биосферы в литосфере.

3. Гидросфера - это жидкая оболочка Земли. Она заселена жизнью полностью. Границу биосферы в гидросфере Вернадский проводил ниже океанического дна, потому что дно -это продукт жизнедеятельности живых организмов.

Биосфера представляет собой гигантскую биологическую систему, включающую огромное разнообразие составляющих компонентов, охарактеризовать которые по отдельности крайне трудно. Вернадский предложил все, что входит в состав биосферы, объединить в группы в зависимости от характера происхождения вещества. Он выделял семь групп вещества: 1) живое вещество - это совокупность всех продуцентов, консументов и редуцентов, населяющих биосферу; 2) косное вещество - это совокупность веществ, в образовании которых живые организмы не участвовали, это вещество образовалось до появления жизни на Земле (горные, скалистые породы, вулканические извержения); 3) биогенное вещество - это совокупность веществ, которые образованы самими организмами или являются продуктами их жизнедеятельности (каменный уголь, нефть, известняк, торф и другие полезные ископаемые); 4) биокосное вещество - это вещество, которое представляет собой систему динамического равновесия между живым и косным веществом (почва, кора выветривания); 5)радиоактивное вещество - это совокупность всех изотопных элементов, находящихся в состоянии радиоактивного распада; 6) вещество рассеянных атомов - это совокупность всех элементов, находящихся в атомарном состоянии и не входящих в состав никакого другого вещества; 1) космическое вещество -это совокупность веществ, попадающих в биосферу из космоса и имеющих космическое происхождение (метеориты, космическая пыль). Вернадский считал, что главную преобразующую роль в биосфере играет живое вещество. Оно выполняет пять основных биосферных функций: 1) энергетическая функция -это способность живых организмов поглощать солнечную энергию, превращать ее в энергию химических связей и передавать по пищевым цепям. Благодаря этой функции постоянно идет восполнение потерь энергии в экосистемах и поддержание жизни в биосфере; 2) газовая функция - это способность живых организмов поддерживать постоянство газового состава биосферы в результате сбалансированности фотосинтеза и дыхания. 3) концентрационная функция - это способность живых организмов накапливать в своем теле определенные элементы окружающей среды, благодаря чему произошло перераспределение элементов в пределах биосферы и образовались полезные ископаемые; 4) окислительно-восстановительная функция - это способность живых организмов в ходе биохимических реакций изменять степень окисления элементов и создавать, таким образом, разнообразие соединений в природе, необходимое для поддержания разнообразия жизни в биосфере; 5) деструктивная функция -это способность живых организмов разлагать отмершее органическое вещество до биогенов, поглощаемых продуцентами, благодаря чему осуществляется круговорот вещества в биосфере, и жизнь может существовать бесконечно долго без поступления вещества из космоса.

Биогеохимические круговороты вещества в биосфере

Чтобы биосфера не переставала существовать и чтобы не прекращалось ее развитие, на Земле постоянно должен осуществляться круговорот биологически важных веществ. Это значит, что после использования они должны снова переходить в форму, пригодную для усвоения другими организмами. Этот переход биологически важных элементов от звена к звену, который осуществляется в масштабах всей планеты при определенных затратах энергии, источником которой является Солнце, называется геологическим, или большим, круговоротом. После появления живого вещества на основе геологического круговорота образовался круговорот органического вещества, который называется биологическим, или малым, круговоротом. По мере развития живой материи из геологического круговорота изымалось все больше элементов, которые включались в непрекращающийся биологический круговорот, являющийся основой жизни. Одни элементы необходимы организмам в большом количестве, другие - в меньшем, а некоторых элементов требуется очень мало. Поэтому элементы, которые включаются в биологический круговорот, подразделяются на макро-, микро- и ультрамикроэлементы. Однако живое вещество в биологическом круговороте превращается в неживое, а оно в свою очередь под влиянием редуцентов превращается в неорганическое вещество, которое дальше может либо снова включаться в биологический круговорот, либо выходить из него и включаться в геологический круговорот. В свою очередь элементы из геологического круговорота могут поглощаться организмами и вовлекаться в биологический круговорот. Поскольку биологический круговорот связан с геологическим, то логично рассматривать их как единое целое, как биогеохимический круговорот элементов.

При рассмотрении биогеохимического круговорота любого вещества необходимо выделять две части запаса этого вещества: 1) обменный фонд - это часть элемента, которая находится в круговороте, он составляет незначительную часть общего объема элемента; 2) резервный фонд - это часть элемента, которая не циркулирует и пока что не будет циркулировать, однако может быть при необходимости включена в круговорот. Резервные фонды отличаются по степени подвижности и легкости вовлечения в круговорот. Различают газообразный резервный фонд, который находится в атмосфере и является наиболее подвижным и доступным (N, О, С), и осадочный резервный фонд, который находится в литосфере или гидросфере и труднее включается в обменный фонд по двум причинам: 1) он предварительно должен быть переведен в водорастворимое состояние, чтобы живые организмы могли его ассимилировать; 2) он доступен не везде одинаково, потому что может находиться под землей на разной глубине.

Рассмотрим примеры биогеохимических круговоротов ве­ществ с газообразным (N, С) и осадочным (Р, Н2О) фондами.

Биогеохимический круговорот азота. Азот имеет газообразный резервный фонд, который находится в атмосфере. Между резервным и обменным фондами постоянно осуществляется обмен элементов и обеспечивается непрерывная связь (рис. 15).

Из резервного фонда азот включается в обменный фонд тремя путями:

  1. Атмосферная фиксация. Под действием атмосферных электрических разрядов часть азота взаимодействует с кислородом с образованием оксида и диоксида азота, которые растворяются в водяных парах и в виде азотистой и азотной кислот попадают в почву. В почве образуются нитраты, которые поглощаются растениями и включаются в биологический круговорот.

  2. Биологическая фиксация. В основном азот из резервного фонда вовлекается в обменный фонд азотфиксирующими бактериями, которые переводят его в доступные для растений формы.

  1. Промышленная фиксация. С наступлением промышленной революции человек научился с помощью техники превращать газообразный азот в минеральные азотные удобрения, которые после внесения в почву усваиваются растениями в аммиачной и нитратной форме.

Пополнение резервного фонда из обменного фонда происходит путем денитрификации, которую осуществляют денитрифицирующие бактерии. Часть азота из обменного фонда смывается с поверхностным стоком в море, где он включается в морские организмы или мелководные отложения. Часть его через живые организмы возвращается в биологический круговорот, а часть переходит в глубоководные отложения - это полные и окончательные потери элемента.

После наступления техногенной эры сельское хозяйство стало широко использовать технику для обработки почвы, а это привело к усилению поверхностного стока и увеличению выноса азота. За счет улучшения аэрации усилился процесс денитрификации. В то же время, за последние 100 лет биологическая фиксация снизилась в 20-30 раз. Все это привело к обеднению обменного фонда и для его пополнения человек вынужден вносить минеральные удобрения или на больших площадях выращивать азотфиксирующие бобовые растения. Однако примерно 1/10 часть искусственно внесенного азота используется растениями, а остальная часть с поверхностным стоком и грунтовыми водами переходит в морские отложения. При этом име­ет место эвтрофикация пресноводных экосистем, что ведет к их деградации. Таким образом, в результате антропогенного влияния происходит перекачивание азота из резервного фонда в обменный, а из него - в глубоководные отложения. То есть происходит постепенное выведение азота из круговорота.

Биогеохимический круговорот углерода. Углерод имеет газообразный резервный фонд. Сейчас в атмосфере содержание углекислого газа составляет 0,032%, а в начале века этот показатель был равен 0,029%. За 100 лет изменение его составило всего 0,003%, однако это привело к заметному проявлению «парникового эффекта»: среднегодовая температура повысилась на 0,5°С, а уровень Мирового океана поднялся на 15 см. Если среднегодовая температура повысится на 3 - 4 °С, произойдет таяние вечных льдов, и уровень Мирового океана поднимется на 50 - 60 см, что приведет к затоплению значительной части суши. По подсчетам ученых, это может наступить менее чем через 100 лет, если сохранится нынешняя тенденция увеличения содержания углекислого газа в атмосфере. Потепление климата и возврат к третичному периоду были бы благоприятны для человека как биологического существа, но с точки зрения человека как социального существа- это катастрофа. После образования планеты уровень углекислого газа в атмосфере был высокий. После появления растений углекислый газ начал ассимилироваться, и когда суша стала заселяться высшими растениями, уровень углекислого газа начал снижаться и составил 0,1-0,4%. Эта эпоха характеризовалась теплым, влажным климатом и очень высокой продуктивностью растений, что привело к еще более значительному снижению уровня углекислого газа (0,010 - 0,015%) и наступлению ледникового периода. Сейчас наблюдается обратная тенденция. Причины повышения концентрации углекислого газа в атмосфере можно выяснить, рассмотрев особенности его биогеохимического круговорота (рис. 16).

Между атмосферой и Мировым океаном постоянно происходит карбонатный обмен. Океан обладает буферной емкостью, поэтому может удерживать углекислый газ. Этот процесс сбалансирован. При вулканической деятельности процесс выделения и поглощения углекислого газа также сбалансирован. Между сушей и атмосферой наблюдается баланс углекислого газа. Те изменения содержания углекислого газа в атмосфере, которые имели место в истории планеты, можно объяснить разной буферной емкостью водной среды или продуктивностью растений, их ассимиляционной активностью. В настоящее время к этим природным процессам добавилось еще антропогенное влияние за счет промышленности, в результате деятельности которой ежегодно выделяется 6-8 млрд т углекислого газа, и сельского хозяйства, дающего ежегодно 2-3 млрд. т. СО2. В связи с этим его содержание в атмосфере возрастает не линейно, а экспоненциально. Наибольший вклад в этот процесс вносят энергетика и транспорт. Процесс потепления климата протекал бы более ощутимо, если бы он не сдерживался пылевым загрязнением биосферы, в результате которого снижается прозрачность атмосферы, а значит, уменьшается количество поступающей на планету солнечной энергии. Таким образом, под действием человека ранее накопленный в виде полезных ископаемых углерод переводится в углекислый газ, который пополняет резервный фонд углерода в атмосфере.

Биогеохимический круговорот фосфора. Фосфор имеет осадочный резервный фонд, представленный фосфорсодержащими горными породами. В природных условиях пополнение обменного фонда за счет резервного происходит в результате выщелачивания горных пород, содержащих фосфор. Даже глубоко расположенные породы подвергаются выщелачиванию грунтовыми водами, которые либо поднимаются на поверхность и выносят фосфор в почву, либо попадают в море. Из обменного фонда фосфор выводится в нерастворимой форме в составе костей скелета отмирающих животных, которые пополняют резервный фонд, и в виде растворимых фосфатов в составе мягких тканей, которые затем снова вовлекаются в обменный фонд.

Раньше между этими процессами сохранялся баланс. В настоящее время под влиянием хозяйственной деятельности человека резко увеличился поверхностный сток, выносящий фосфор в море. Здесь он включается в мелководные отложе­ния, откуда далее может как включаться в биологический кру­говорот, так и переходить в глубоководные отложения и вообще выводиться из биогеохимического круговорота. Это при­вело к обеднению обменного фонда. Чтобы исправить ситуа­цию, человек начал добывать фосфорсодержащие породы, получать из них фосфорные удобрения и вносить их в почву, что, как и в случае с азотом, привело к эвтрофикации поверхностного стока. Таким образом, человек осуществляет перекачивание фосфора из резервного фонда в обменный и в дальнейшем его выведение из круговорота.

Биогеохимический круговорот воды. Некоторые элементы свою планетарную роль выполняют в виде соединений, так, например, водород в виде воды. Вода в биосфере играет очень важную роль - это основной компонент биосферы, она входит в состав живого вещества, участвует в процессе транспирации, является средой для растворения практически всех элементов при осуществлении их круговоротов. Вода имеет как газообразный резервный фонд (водяные пары в атмосфере), так и осадочный (жидкая вода и веч ные льды) (рис. 18). Запасы воды представлены в геограммах (1 геограмм = = 1- 1020 г). В море воды испаряется больше, чем выпадает с осадками (-0,4 геограмма). Этот недостаток компенсируется за счет поверхностного (+0,2 геограмма) и глубинного (+0,2 геограмма) стоков, благодаря тому, что на суше осадки превалируют над испарением (+0,4 геограмма). Эти процессы сбалансированы. Поверхностный и подземный стоки по дороге выполняют большую работу по миграции элементов. Кроме того, подземный сток осуществляет выщелачивание элементов из осадочных резервных фондов и пополнение их обменных фондов. В связи с деятельностью человека поверхностный сток усилился, в результате усилилась миграция всех элементов, увеличился их смыв, что привело к эвтрофикации поверхностных водоемов и выведению элементов из обменного фонда. Подземный сток наоборот сократился, что привело к уменьшению количества грунтовых вод, в результате чего процесс выщелачивания ослабился, и снизилось пополнение обменного фонда целого ряда элементов. Таким образом, человек своей деятельностью нарушил баланс между поверхностным и подземным стоком, что отрицательно сказывается на биогеохимических круговоротах элементов и может привести к нарушению равновесия в биосфере.