43.Очистка газов от сероводорода.
Сероводород – бесцветный газ с характерным запахом, хорошо растворим в воде. Один объем воды растворяет в обычных условиях около 3 объемов сероводорода. В водном растворе сероводород ведет себя как слабая кислота, она несколько слабее угольной кислоты. При нагревании растворимость сероводорода в воде понижается.
Сероводород сильно токсичен. При концентрации сероводорода в воздухе 0,004 мг/л ощущается сильный запах. При более высоких концентрациях этого газа в воздухе возможны сильные отравления у людей, вплоть до летальных исходов из-за остановки дыхания. Предельно допустимая концентрация (ПДК) сероводорода в воздухе рабочей зоны составляет 10 мг/м3, а в присутствии углеводородов – 3 мг/м3. Максимальная разовая и среднесуточная ПДК в атмосферном воздухе населенных пунктов равна 0,008 мг/м3
Методы очистки газовых выбросов от сероводорода основаны таких его свойствах, как хорошая растворимость в воде с образованием слабой кислоты, способности окисляться с образованием различных продуктов. Сероводород может гореть на воздухе с образованием серы или оксида серы в зависимости от условий проведения процесса:
2 Н2S + 3 О2 = 2 Н2О + 2 S О2 (в избытке кислорода)
2 Н2S + О2 = 2 Н2О + 2 S (при недостатке кислорода)
Очистка промышленных газовых выбросов от сероводорода может проводиться как мокрым, так и сухим способами. В мокрых методах очистки содержащие сероводород газы контактируют с поглотительными растворами, в состав которых входят компонеты, способные химически взаимодействовать с сероводородом. В сухих способах очистки газов от сероводорода используются сорбенты различной природы. Поглощение сероводорода происходит в результате течения обратимых химических реакций и процессов сорбции – десорбции.
Методы очистки газов от сероводорода
-
метод
основные процессы метода
Мышьяково-содовый метод очистки газов от Н2S
абсорбция:
Na4As2S5O2 + H2S = Na4As2S6O + H2O
регенерация сорбента:
Na4As2S6O + ½ O2 = Na4As2S5O2 + S
Фосфатный метод очистки газов от Н2S
Н2S + К3РО4 = К2НРО4 + КНS
Железо-содовый метод очистки газов от Н2S
абсорбция:
Н2S + Na2CO3 = NaНS + NaНCO3
3NaНS + 2Fe(OH)3 = Fe2S3 + 3 NaОН + 3Н2О
3NaНS+2Fe(OH)3 =2 FeS + S + 3NaОН+3Н2О
регенерация сорбента:
2 Fe2S3 + 6 Н2О + 3 О2 = 4 Fe(OH)3 + 6 S
4 FeS + 6 Н2О + 3 О2 = 4 Fe(OH)3 + 4S
Адсорбция Н2S цеолитами.
адсорбция:
Н2S + NaA Н2S(NaA)
регенерация сорбента:
Н2S(NaA) Н2S + NaA
Адсорбция Н2S активированным углем
адсорбция:
Н2S + (уголь) + О2
каталитическое окисление:
2 Н2S + О2 = 2 Н2О + 2 S
Мышьяково-содовый метод очистки газов от Н2S основан на хемосорбции сероводорода тиоарсенатом натрия. Химизм процесса сложен, результирующие реакции могут быть представлены в виде следующих схем:
N aS SNa NaS SNa
AsSAs + Н2S AsSAs + Н2О
NaS SNa NaS SNa
O O O S
Раствор А Раствор Б
N aS SNa NaS SNa
AsSAs + ½ O2 AsSAs + S
N aS SNa NaS SNa
O S O O
Абсорбцию и регенерацию сероводорода проводят при температуре 40 – 45ОС в скрубберах различной конструкции. Абсорбцию и регенерацию сероводорода проводят при температурах 40 – 45ОС.
К достоинствам метода относится селективность очистки по отношению к сероводороду, высокая эффективность очистки: степень выделения сероводорода достигает 98%.
Фосфатный метод очистки газов от Н2S основан на хемосорбции сероводорода раствором фосфата калия. Данный метод очистки газов от сероводорода обладает определенными преимуществами по сравнению с мышьяково-содовым методом: нелетучесть фосфата калия позволяет проводить процесс при более высоких температурах, используемый поглотительный раствор позволяет селективно выделять сероводород из загрязненных газов, где его концентрация относительно высока и присутствует в значительных количествах СО2. Фосфат калия может взаимодействовать с очищаемым газом с выделением в аппаратах очистки нерастворимых карбонатов, потому при повышенном содержании в промышленных газах СО2 процесс проводят с использованием 35% раствора фосфата калия. Степень очистки газов от сероводорода в фосфатном методе несколько ниже, чем в мышьяково-содовым, остаточное содержание сероводорода около 1,5 г/м3.
Железо-содовый процесс очистки газов от Н2S проводится на ряде химических предприятий. В основе метода лежит процесс поглощения сероводорода суспензией гидроксида железа Fe(OH)3 в растворе соды Na2CO3 в щелочной среде ( рН 8,5 – 9,0).
При регенерации поглотительного раствора сульфиды железа окисляются кислородом воздуха с выделением элементарной серы, которая представляет собой товарный продукт.
Очистка газов от Н2S цеолитами. Цеолиты NaA, CaA являются эффективными сорбентами, отличающимися высокой адсорбционной способностью и селективностью по отношению к сероводороду. Процесс можно проводить в присутствии СО2, который хоть и сорбируется вместе с сероводородом, но значительно легче десорбируется. На начальной стадии очистки из загрязненного газа извлекаются как сероводород, так и СО2. Затем сероводород вытесняет из сорбента СО2 и содержание последнего в выходящем из адсорбера газе начинает возрастать. Процесс может быть остановлен при любом экономически и технологически оправданном содержании СО2 в очищаемой газовой смеси. Наилучшими эксплуатационными свойствами обладают цеолиты типа СаА.
Очистка газов от Н2S активированным углем состоит в адсорбции сероводорода на поверхности угля и последующем окислении Н2S кислородом воздуха до элементарной серы. Активированный уголь одновременно является адсорбентом и катализатором окисления сероводорода. Каталитические свойства сорбента усиливают путем нанесения на его поверхность других веществ - катализаторов окисления сероводорода, например, иода, иодистого калия. Образующаяся на поверхности и в объеме пор сорбента элементарная сера снижает его активность, поэтому периодически проводят регенерацию угля. Для этого серу вымывают из сорбента специальным растворителем. Далее промытый уголь очищают от растворителя, сушат. При этом возникает проблема рекуперации растворителя, а также проблема очистки газовых выбросов от паров растворителя. Процесс поглощения сероводорода активированным углем не находит широкого применения еще и потому, что в аппаратах очистки возможно протекание сильно экзотермичной реакции окисления сероводорода до серной кислоты, что может быть причиной возгорания угля.
Поглощение и химическое превращение сероводорода в элементарную серу используется в процессах очистки промышленных газов от органических сернистых соединений.
- Раздел 6 — Техника и технология защиты окружающей среды.
- 1 Сточные воды, состав и свойства сточных вод, источники загрязнений.
- 1 Группа
- 3 Группа
- 4 Группа
- 2 Условия выпуска производственных сточных вод.
- Сброс сточных вод не допускается:
- 3 Классификация методов очистки сточных вод. Методы удаления из воды веществ группы I
- Методы удаления из воды веществ группы II
- Методы удаления из воды веществ группы III
- Методы удаления из воды веществ группы IV
- 4 Основные конструкционные материалы, используемые в очистных сооружениях.
- 5 Основные показатели мощности очистных сооружений (бпк, хпк, перманганат-ная окисляемость, рН, температура), методы их определения, расчет.
- Определение окисляемости перманганатной
- Конец формы Конец формы Определение температуры
- Определение показателя pH универсальным индикатором
- Определение аммонийного азота
- Определение нитритного азота
- Определение нитратного азота
- Определение биохимического потребления кислорода
- Определение бпк5
- Определение бихроматной окисляемости ускоренным методом
- Холостой опыт
- 6.Физико-химические основы процессов очистки сточных вод методами коагу-ляции. Химическая и физико-химическая очистка сточных вод
- Коагуляция
- 7.Физико-химические основы процессов очистки сточных вод методом электрокоагуляции и флотации.
- Электрокоагуляционная установка
- Флотация
- (Вакуумной и напорной).
- Расчет ионообменной очистки сточных вод
- 9. Физико-химические основы процессов очистки сточных вод методом электродиа-лиза.
- 10 Физико-химические основы мембранных процессов очистки (обратный осмос, ультрафильтрация).
- Узел обратного осмоса
- Адсорберы с псевдоожиженным слоем активного угля
- Абсорберы с механическим перемешиванием жидкости
- П олые распыливающие абсорберы и циклонный скрубер
- 12.Решетки
- Горизонтальная песколовка
- Песколовки с круговым движением воды:
- Тангенциальная песколовка с вихревой водяной воронкой
- 14.Отстойники
- Горизонтальный отстойник, оборудованный тонкослойными блоками
- Одиночный двухъярусный отстойник
- Осветлитель-перегниватель
- Радиальные отстойники
- Радиальный отстойник
- Кинетика осаждения сточной воды
- Расчет вертикального отстойника
- Расчет горизонтальных отстойников
- 15.Септики
- 16.Гидроциклоны
- 17.Центрифуги
- 18.Преаэраторы
- 19. Биологические фильтры
- Орошение загрузки биофильтров
- Распределительные желоба со свободным сливом
- Брызгалки:
- Реактивный вращающийся ороситель и ороситель типа сегнетова колеса
- 1 Вращающаяся дырчатая труба; 2 подпятник.
- Разбрызгивающие оросители
- Вращающийся центробежный разбрызгиватель
- Спринклерная головка
- 20.Капельные биологические фильтры
- 21.Высоконагружаемые биологические фильтры (аэрофильтры).
- 22.Биофильтры с пластмассовой загрузкой
- 23.Погружные дисковые фильтры
- 24.Барабанные погружные биофильтры
- 25.Аэротенки
- Схемы аэротенков
- Аэраторы
- Пневмомеханический аэратор Трубчатые аэраторы
- 26.Циркуляционные окислительные каналы (цок)
- Циркуляционный окислительный канал непрерывного действия
- 27.Биохимическая очистка сточных вод в окситенках
- 28.Метантенки
- 29.Аэрационные установки на полное окисление (аэротенки с продленной аэрацией)
- Аэрационные установки на полное окисление (аэротенки с продленной аэрацией) Аэротенки-отстойники типа био
- 30. Биологические пруды их конструкция, расчет.
- Расчет биологических прудов
- I. Пруды с естественной аэрацией
- П. Пруды с искусственной аэрацией
- 31. Очистка сточных вод на полях фильтрации ,поглощения ,фильтрующих канна-вах и траншеях.
- Поля подземной фильтрации
- Фильтрующая траншея
- Фильтрующие колодцы
- 32. Источники и виды атмосферного загрязнения. Методы очистки атмосферы.
- 33. Методы очистки промышленных газовых выбросов от пыли.
- 34.Пылеосадительные камеры.
- 35.Циклоны
- 36.Фильтры
- 37.Электрофильтры.
- 38.Мокрые пылеулавливающие аппараты
- 39. Методы очистки промышленных газовых выбросов от газообразных и паро-образных загрязнений.
- 40. Аб(ад)сорбционные методы очистки газов
- 43.Очистка газов от сероводорода.
- 44.Очистка газов от оксида серы (I).
- 45.Очистка газов от оксидов азота.
- 46.Очистка газов от аммиака.
- 47. Примеры автономных очистных сооружений
- Искусственная очистка сточных вод
- Принципиальные схемы систем местной канализации