2.3.Пространственное распределение электрона в атоме водорода.@
Графически вероятность нахождения электрона можно изобразить в виде облака, где более темные области соответствуют большей вероятности нахождения. «Размеры» и «форму» электронного облака в заданном состоянии атома можно вычислить. Для основного состояния атома водорода решение уравнения Шредингера дает
, (2.6)
где φ(r)– волновая функция, зависящая только от расстоянияrдо центра атома,r1– постоянная, совпадающая с радиусом первой Боровской орбиты. Следовательно, электронное облако в основном состоянии водорода сферически-симметрично, как показано на рисунке 11. Электронное облако только приблизительно характеризует размеры атома и движение электрона, так как согласно (2.15) вероятность обнаружения электрона не равна нулю для любой точки пространства. На рисунке 12 изображены электронные облака атома водорода в состояниях:n=2,l=1 иm=1, 0, -1 при наличии магнитного поля.
Рис. 11. Электронное облако атома водорода в основном состоянии n =1,l = 0.
Рис. 12. Электронные облака атома водорода и прецессия моментов импульса в состояниях n = 2,l= 1 дляm = 1, 0, -1
Если в этих состояниях определить наиболее вероятные расстояния электрона от ядра, то они будут равны радиусам соответствующих Боровских орбит. Таким образом, хотя квантовая механика не использует представление о движении электрона по определенным траекториям, тем не менее, радиусам Боровских орбит и в этой теории можно придать определенный физический смысл.
- Элементы квантовой физики. Строение атома и ядра
- Оглавление
- 1. Основные положения квантовой механики.
- 2. Физика атома.
- 3. Атомное ядро.
- 4. Элементарные частицы.
- 1. Основные положения квантовой механики.
- 1.1.Противоречия классической физики: особенности строения атома, линейчатые спектры атомов, дифракция электронов, дифракция нейтронов.@
- 1.2.Гипотеза Луи-де-Бройля о корпускулярно-волновом дуализме свойств микрочастиц.@
- 1.3.Соотношение неопределенностей Гейзенберга.@
- 1.4.Постулаты квантовой механики. Вероятностный характер движения частиц. Волновая функция, её статистический смысл. Задание состояния микрочастицы.@
- 1.5.Уравнение Шредингера. Физические ограничения на вид волновой функции. Стационарное уравнение Шредингера, стационарные состояния.@
- 1.6.Частица в одномерной бесконечно глубокой потенциальной яме. Квантование энергии частицы. Объяснение туннельного эффекта. Гармонический осциллятор.@
- 2 Физика атома.
- 2.1.Электрон в атоме водорода. Энергетические уровни. Квантовые числа и их физический смысл.@
- 2.2.Опыт Штерна и Герлаха.@
- 2.3.Пространственное распределение электрона в атоме водорода.@
- 2.4.Спин электрона.@
- 2.5.Многоэлектронный атом. Правила распределения электронов по орбиталям. Принцип Паули.@
- 2.6.Особенности структуры электронных уровней в сложных атомах. Связь распределения электронов по орбиталям с периодической таблицей Менделеева.@
- 2.7.Элементарная квантовая теория испускания атомами электромагнитного излучения.@
- 2.8.Спонтанное и вынужденное излучение фотонов. Принцип работы квантового генератора и его использование.@
- 3 Атомное ядро.
- 3.1.Состав ядра. Характеристики ядра.@
- 3.2.Модели ядра: капельная, оболочная. Ядерные силы.@
- 3.3.Энергия связи ядра. Дефект массы.@
- 3.4.Два типа ядерной реакции. Энергия ядерной реакции.@
- 3.5.Радиоактивность. Закон радиоактивного распада. Альфа, бета, гамма – излучения.@
- 3.6.Цепная ядерная реакция деления.@
- 3.7.Использования энергии ядерных цепных реакций. Атомная бомба. Ядерный реактор.@
- 3.8.Проблемы развития атомной энергетики.@
- 3.9.Управляемая реакция термоядерного синтеза.@
- 3.10.Свойства и характеристики радиоактивных излучений.@
- 3.11.Биологическое действие ионизирующих излучений.@
- 4. Элементарные частицы.
- 4.1.Свойства элементарных частиц. Гравитационное, электромагнитное, слабое и сильное взаимодействия.@
- 4.2.Классификация элементарных частиц.@
- 4.3.Гипотеза строения элементарных частиц из кварков.@
- 4.4.Гипотеза Великого объединения всех видов взаимодействия.@
- Библиографический список