logo
квантовая механика

1.4.Постулаты квантовой механики. Вероятностный характер движения частиц. Волновая функция, её статистический смысл. Задание состояния микрочастицы.@

Объяснить одновременное наличие корпускулярных и волновых свойств у микрочастиц удалось на основе идей Бора и Луи-де-Бройля в рамках новой теории, называемой волновой или квантовой механикой, созданной Гейзенбергом, Шредингером, Борном и многими другими учеными начала ХХ века. Квантовая механика базируется, как и любая другая физическая теория, на ряде постулатов. Основные постулаты можно представить упрощенно в следующем виде.

1.Движение микрочастиц в пространстве имеет вероятностный (стохастический) характер.Это относится не только к совокупности (ансамблю) частиц, но и к каждой отдельной частице. Согласно этому постулату, микрочастица, находясь в силовых полях или в вакууме (при отсутствии полей), испытывает такое воздействие, что нельзя в любой момент времени определить точно параметры ее движения. Например, нельзя одновременно характеризовать ее траекторию точными значениями координат и скорости или точными значениями энергии и времени какого-либо процесса у частицы.

2.Стохастический характер движения микрочастиц требует применения понятий математики теории вероятности для описания и расчета определенных значений параметров частиц в эксперименте. С точки зрения математики, отсюда следует, что движение таких частиц должно описываться с помощью некоторой «особой» волновой функции, которая должна характеризовать вероятностные особенности микрочастиц. Интерпретацию волновой функции дал в 1926г. немецкий физик Макс Борн следующим образом - волновая функция ψ (х, у, z) характеризует вероятность нахождения частицы в данный момент времени в некоторой точке пространства. Согласно Борну, физический смысл имеет не сама функция, а квадрат модуля волновой функцииψ2, который равен вероятности dP того, что частица будет обнаружена в пределах рассматриваемого малого объема dV. Формула связи этих понятий имеет вид

dP = ψ2 dV = ψ2dxdydz . (1.8)

Для совокупности частиц под вероятностью понимают отношение числа частиц в малом объеме к общему числу частиц, а для одной частицы – отношение времени пребывания частицы в малом объеме к общему времени рассмотрения движения частицы.

3.Волновая функция является основной характеристикой состояния микрообъекта, с помощью волновой функции можно рассчитать вероятность пребывания частицы в различных точках пространства в различные моменты времени, а также средние значения различных ее параметров.Соответственно вероятностному смыслу волновой функции и используя формулы теории вероятности, средние значения параметров находятся путем усреднения соответствующих операторов с помощью волновой функции. Например среднее значение для модуля радиуса-вектора частицы <r> можно найти по формуле

. (1.9)

Так как в физических экспериментах определяются именно средние значения параметров частицы, то можно говорить, что состояние частицы полностью задается ее волновой функцией.

4.Вид волновой функции зависит от типа частицы и от внешних силовых полей, действующих на частицу. Вид функции находится с помощью специального дифференциального уравнения, называемого уравнением Шредингера.

5.Если в эксперименте наблюдается суперпозиция (объединение) микрочастиц, описываемых разными волновыми функциями, то объединенный ансамбль этих частиц будет описываться суммой их волновых функций.Например, если при интерференции микрочастиц на двух щелях, их можно по отдельности описать двумя функциями ψ1и ψ2, тогда совокупность этих частиц в районе экрана должна описываться функцией ψ = ψ12. Так как вероятность распределения частиц на экране dP определяется квадратом модуля волновой функции, то получаем dPψ2=ψ12+ 2ψ1ψ2+ψ22. Отсюда следует, что распределение зависит не только от простого сложения вероятностей двух независимых ансамблейψ12+ψ22, но и от результата их специфичного квантового «взаимодействия» 2ψ1ψ2, вследствие чего и наблюдается интерференция частиц.

Имеется еще ряд постулатов, но они имеют более частный характер, о некоторых из них будет сказано далее.