logo
квантовая механика

2.4.Спин электрона.@

Из квантовой теории следует, что вследствие симметрии электронного облака механический и магнитный моменты атома, находящегося в основном, невозбужденном состоянии, равны нулю. Следовательно, если в опыте Штерна - Герлаха обеспечить условия, при которых в атомном пучке будут двигаться невозбужденные атомы, то такой атомный пучок не должен расщепляться магнитным полем. Однако эксперимент не подтвердил такой вывод квантовой теории. Пучок невозбужденных атомов серебра расщепился на два пучка, которые создали две узкие зеркальные полоски, сдвинутые симметрично вверх и вниз.

Для объяснения этого и ряда подобных явлений в 1925 г. С.Гаудсмит и Дж.Уленбек выдвинули смелую теорию о том, что сам электрон является носителем собственных механического и магнитного моментов, не связанных с движением электрона в пространстве. Эта гипотеза получила название гипотезы о спине электрона. Такое название связано с английским словом spin, которое переводится как кружение, верчение. Согласно выдвинутой теории, электрон обладает собственным моментом импульса Ls, который получил название спина, и собственным магнитным моментом . Спин электронаLsне квантуется по величине, но квантуется его проекция на направление магнитного поля Lszсогласно формуле

, (2.7)

спиновое квантовое число sможет принимать только два значенияs= +1/2 иs= -1/2, то есть у самого электрона во внешнем поле возможны два направления спина.

Первоначально предполагалось, что спин обусловлен вращением электрона вокруг своей оси. Однако такая модель вращающегося заряженного шарика оказалась несостоятельной, так как расчет показал, что ни при каких допустимых скоростях вращения нельзя индуцировать магнитный момент, равный по величине собственному магнитному моменту электрона. Спин электрона не имеет классического аналога. Он характеризует внутреннее свойство квантовой частицы, связанное с наличием у нее некоторой дополнительной степени свободы движения. Количественная характеристика этой степени свободы - спин является для электрона такой же величиной как, например, его масса и заряд.

Наличие спина электрона и возможность его пространственного квантования во внешнем поле позволило объяснить эффекты, которые наблюдались при изучении тонкой структуры оптических спектров ряда атомов. Например, тщательное исследование спектральных линий водорода в магнитном поле показало, что каждая линия состоит из двух близких линий. Это явление получило название тонкой структуры, оно объясняется возможностью двойной ориентации спина.

В 1928 г. П. Дирак обобщил квантовую теорию на случай релятивистского движения частиц. Это уравнение значительно сложнее уравнения Шредингера по своей структуре, но из уравнения Дирака спиновое квантовое число получается так же естественно, как и три квантовых числа при решении уравнения Шредингера. Можно упрощенно сказать, что собственные механический и магнитный моменты у электрона появляются как следствие учета релятивистских эффектов в квантовой теории. Отметим также, что не только электрон, но и многие другие элементарные частицы, в том числе и не заряженные, обладают спином.

Таким образом, каждое квантовое состояние электрона в атоме определяется набором четырех квантовых чисел n, l, m, s. При этом возможны только определенные комбинации этих квантовых чисел:

n = 1, 2, 3, …  ; l = 0, … n -1; m = – l, – l +1, … l -1,  l ; s =  1/2. (2.8)