9.2 Обеспечение радиационной безопасности природной среды
В первый период использования ядерной энергии вопросы обеспечения радиационной безопасности касалась только персонала, непосредственно связанного с ядерными установками, и людей, проживающих в непосредственной близости к этим предприятиям. В современный период быстрого и широкого развития ядерной энергетики фактор дополнительного воздействия ионизирующих излучении на человека и окружающую его среду приобретает глобальный характер. В этих условиях должны быть разработаны принципиально новые концепции радиационной защиты человека, так как в этом случае в качестве облучаемого контингента должно рассматриваться все население земного шара. Глобальное рассеяние искусственных радиоактивных веществ и техногенное усиление темпов круговорота естественных радионуклидов обусловливают дополнительное, по сравнению с природным фоновым, облучение любого живого организма в биосфере Земли, что одновременно с радиационно-гигиеническими проблемами может выдвигать задачи экологического нормирования радиационных воздействий на природные сообщества микроорганизмов, растений и животных (3).
В основу современных концепций нормирования радиационного фактора положен принцип ограничения дозы на человека. В Публикации № 26 МКРЗ (85), отражающей наиболее современные воззрения на принципы радиационной безопасности, говорится, что «...меры радиационной безопасности, необходимые для защиты населения, по-видимому, будут достаточны, чтобы одновременно защитить и все другие виды живых организмов, хотя и не обязательно все особи этих видов». МКРЗ, следовательно, полагает, что если человек надежно защищен от облучения, другие виды живых организмов будут также достаточно защищены. Повышение радиационного фона в глобальных масштабах делает актуальной задачу разработки принципов охраны здоровья человека и окружающей его среды с учетом непосредственного воздействия ионизирующих излучений на объекты природной среды. Это целесообразно назвать экологическим принципом нормирования радиационной нагрузки. В дополнение к анализу влияния облучения на человека, что можно считать радиационно-гигиеническим, или антропогенным принципом нормирования радиационного воздействия. При применении критериев радиоэкологического нормирования имеется в виду помимо решения задачи охраны биологических ресурсов нашей планеты, в первую очередь сохранения генофонда живых организмов в биосфере Земли, также обеспечение такой среды обитания человека, которая необходима для его нормального существования. При этом нужно исходить из тезиса, что охрана здоровья человека от радиационного воздействия — это не только прямая защита его от облучения, но и обеспечение радиационной безопасности самой среды, так как человек может быть здоров только в «здоровой» среде (3).
По рaдиoycтoйчивости человек относится к самым радиочувствительным организмам в биосфере. ЛД100 для него при остром воздействии составляет 4,5 Гр. Однако целый ряд других объектов внешней среды, помимо упомянутых выше млекопитающих, в общем достаточно близок по радиорезистентности к человеку. Доказано, что существовавшая в 60-х годах концепция прямой зависимости между филогенетическим возрастом живых организмов и радиоустойчивостью (чем старше организм на филогенетической лестнице, тем он более радиоустойчив) не является строгой. Так, филогенетически более древние организмы—древесные породы (особенно хвойные) оказываются по радиочувствительности достаточно близкими к филогенетически более молодым представителям живого мира — млекопитающим и человеку. Радиоэкологическими исследованиями в нашей стране и за рубежом показано, что гибель взрослых сосновых деревьев при остром облучении происходит при дозе около 1—2 Гр. Эта доза еще ниже для молодых (5—10-летних) деревьев. Таким образом, хвойные древесные породы, составляющие основу значительной части лесного покрова Земли, по радиочувствительности близки к человеку и млекопитающим; коэффициент запаса по дозовым воздействиям, ведущим к летальным последствиям, для человека относительно хвойных растений не превышает 2—4 Гр. Поглощенная доза около 20 Гр ведет к гибели не отдельных представителей живого мира, а к поражению целых природных экосистем, каковыми, в частности, являются хвойные леса. Обширная экологическая литература о действии ионизирующих излучений на природные и искусственные экосистемы свидетельствует о том, что поглощенная доза 2—10 Гр вызывает существенные видимые радиационные повреждения у многих типов природных и искусственных сообществ растений и животных (3).
Вместе с тем длительные (десятки и более лет) экологические наблюдения за действием ионизирующих излучений на природные экосистемы показывают, что неблагоприятные сдвиги в природной среде могут иметь место и при значительно более низкой дозе излучения (0,1 – 0,3 Гр). К сожалению, радиоэкологическая информация о влиянии ионизирующих излучений на естественные и искусственные сообщества растений и животных еще не дала убедительных однозначных ответов о дозовой зависимости радиационных эффектов на биогеоценотическом уровне (это в основном связано со сложностью и комплексностью наблюдений за действием ионизирующих излучений в природе). Однако в этой ситуации целесообразно ориентироваться на более осторожные (консервативные) радиоэкологические прогнозы последствий облучения природной среды, чтобы избежать недооценки радиационных эффектов в окружающей человека среде.
Антропогенный (радиационно-гигиенический) подход к нормированию содержания радионуклидов в окружающей среде т. е. оценка предельно допустимых концентраций радиоактивных веществ в объектах внешней среды только с точки зрения радиационной безопасности человека как объекта облучения, не во всех радиологических ситуациях достаточно полный, чтобы обеспечить одновременно радиационную защиту и человека, и других находящихся в окружающей среде живых организмов. Несмотря на то, что природное сообщества живых организмов весьма резистентные образования по отношению к дозам излучений, с которыми связано широкое использование ядерной энергии, задача обеспечения радиационной безопасности биосферы состоит в детальном изучении всех цепей миграции и компонентов биогеоценозов для выявления уязвимых мест, где радиационный стресс может привести к нежелательным последствиям, даже при относительно малом уровне воздействия (3).
Существующие нормативы содержания радиоактивных веществ в объектах окружающей среды являются только радиационно-гигиеническими. При этом объекты внешней среды рассматриваются как источники внешнего облучения человека или как источники питания. Нормирование концентрации радионуклидов в воздухе тоже осуществляется исходя из анализа опасности ингаляционного поступления радионуклидов в организм человека.
При нормировании по радиационно-гигиеническому принципу и рассмотрении последствий облучения человека и живых организмов подразумевается, что абсолютные поглощенные дозы для находящихся в среде, содержащей радионуклиды, человека, с одной стороны, и других живых организмов—с другой, достаточно близки. Однако такое положение не всегда соответствует действительности — реальные поглощенные дозы облучений человека и биологических объектов при выбросе в окружающую среду радионуклидов существенно различаются. Причем в абсолютном большинстве случаев поглощенная доза у растений и животных значительны выше, чем у человека.
Так, при выпадении свежей смеси продуктов деления на посевы злаковых растений дозе у-излучения на открытой местности 1 Гр соответствует поглощенная доза в отдельных критических органах растений, в 10—50 раз (а в крайних случаях до 100—250 раз) более высокая. В лесу, на который оседают В-, у-излучающие нуклиды только по поглощенной дозе у-излучения этот показатель на высоте 1 м (что эквивалентно гигиеническому критерию допустимого внешнего излучения человека) для хвойных лесов после выпадения радиоактивных аэрозолей может быть в 2—2,5 paза ниже, чем поглощенная в кронах деревьев доза, определяющая радиационное поражение леса. Если в состав выпадающей из воздуха смеси радионуклидов входят В-излучатели, не играющие сколько-нибудь заметной роли во внешнем облучении человека, но имеющие первостепенное значение в лучевых эффектах у растений, то поглощенные дозы у человека, находящегося в лесу, и у, собственно древесных растений могут различаться более чем в 20 раз (3).
При ограничении дозы внешнего у-облучения человека до 0, 25 Зв для радиологической ситуации с выведением свежей смеси продуктов деления суммарная поглощенная доза на сельскохозяйственные растения в отдельные фазы их развития может достигать 3—7 Гр, что ведет к снижению урожайности зерна до 60%, резкому возрастанию числа мутаций и увеличению генетического груза. У древесных растений поглощенная доза в этих условиях может превысить 0,5 Гр, что приводит к заметным лучевым эффектам в лесах. При выпасе сельскохозяйственных животных на изодозной линии 0,25 Зв в случае выпадения свежей смеси продуктов деления за счет поступления радионуклидов в организм лактация может уменьшиться на 25—50%, причем у коров развивается хроническая лучевая болезнь I и II степеней. При ограничении дозы облучения человека 0,005—0,03 Зв, эквивалентное облучение популяций растений в дозе 0,6—3 Зв принимая на основании вышеуказанного коэффициент перехода от дозы облучения человека к поглощенной дозе растений равным 100, безусловно, может быть причиной серьезных отрицательных изменений в растительных сообществах (3,92).
Следует отметить, что для обеспечения радиационной безопасности человека имеется арсенал активных методов защиты, наиболее эффективными среди которых являются эвакуация из района загрязнения, постоянное или временное запрещение потребление критических пищевых продуктов дезактивация. Для защиты же живой природы от радиоактивного загрязнения набор технически и экономически приемлемых методов крайне ограничен. Перефразируя известную поговорку «деревья умирают стоя», можно сказать, что «вся природа выдерживает радиационное воздействие на месте» (3).
Если опасность радиационного воздействия обусловлена поступлением радионуклидов с рационом в результате их миграции по пищевым цепям, то защита населения осуществляется прежде всего за счет изменения традиционно сложившейся площади питания, структуры посевных площадей и завоза продовольствия с незагрязненной территории. Естественно, что доза на диких животных и растения от осевшего радиоактивного вещества в подобных ситуациях существенно выше, чем на человека.
Здесь следует напомнить и о различиях в составе рациона человека и животных, приводящих к значительной разнице в дозе облучения сравниваемых объектов, обитающих на территории с одинаковой концентрацией радионуклидов. Наглядным примером могут быть олени, основной корм которых составляют лишайники, играющие роль природного планшета с высокой эффективностью улавливания радиоактивных выпадений. При выпадении 90Sr из воздуха и потреблении оленями лишайников, а человеком — оленины доза облучения костной ткани у оленей может быть выше, чем у человека, более чем в 100 раз. При выпадения 137Сs из атмосферы, поглощенная доза на все тело у оленей больше в два раза, чем у человека (3).
Рассмотренная выше специфика формирования поглощенной дозы при нахождении радионуклидов во внешней среде у человека, с одной стороны, и живых организмов—с другой, побуждает к мысли, что, по крайней мере, в некоторых радиологических ситуациях для определенных групп живых организмов в биосфере экологические нормативы радиационных воздействий оказываются более жесткими, чем санитарно-гигиенические. Справедливость этого положения подтверждается экспериментальными данными для некоторых природных экосистем.
В качестве количественного критерия, с помощью которого целесообразно выполнять экологическое нормирование радиационных воздействий, можно использовать понятие «радиологическая емкость среды», означающее предельное содержание радионуклидов в определенной экосистеме (биогеоценозе) или ее отдельном компоненте, при котором исключено повреждающее действие излучение на критические звенья этой экосистемы. Основным моментом использования этого термина является правильный выбор критических звеньев облучаемой экосистемы (4).
Таким образом, принимая принципы радиационно-гигиенического нормирования как основного при обеспечении радиационной безопасности, следует признать целесообразность их дополнения для ряда радиологических ситуаций, характеризующихся большим разнообразием, экологическими критериями, чтобы гарантировать охрану природной среды от радиационных воздействий при разных видах использования ядерной энергии.
- Содержание
- 6.3Пострадиационное восстановление в биогеоценозах ……………112
- 1 Ведение
- 1.1 История открытия радиоактивности
- 1.2 Предмет и задачи радиоэкологии
- 2 Основы ядерной физики, необходимые для курса радиационной экологии
- Понятие о строении атомного ядра. Изотопы
- 2 Типы ионизирующего излучение и его взаимодействие с веществом
- Единицы измерения радиоактивности и доз ионизирующего излучения
- 3.1 Понятие радиочувствительности
- 3.2.Лучевое поражение клеток
- 3.3 Теории механизма биологического действия ионизирующих излучений
- Гипотеза первичных радиотоксинов и цепных реакций
- 3.4 Радиоационное поражение организма
- Естественный радиационный фон (ерф)
- Космическое излучение
- 4.2 Земная радиация
- Природный радиационный фон и эволюция (по Кузьмину, 1991)(55)
- Миграция радионуклидов в различных компонентах биосферы
- 5.1 Атмосфера
- 5.2Гидросфера
- 5.3 Почва
- 5.4 Растения
- 5.5 Сельскохозяйственные животные
- 6 Радиационное воздействие на сообщества живых организмов
- 6.1 Первичные радиационные эффекты в биогеоценозах
- 6.2 Вторичные лучевые реакции в биогеоценозах
- 6.3 Пострадиационное восстановление в биогеоценозах
- 7 Радиационное поражение естественных и искусственных биогеоценозов основных типов
- 7.1 Естественные и культурные травяные экосистемы
- 7.2 Лесные экоистемы
- 7.3 Чернобыльский лес
- 8 Ядерный топливный цикл
- 8.1 Общая характеристика ятц
- 8.2 Добыча урановой руды, обогащение урана и производство ядерного топлива
- 8.3 Ядерныи реактор
- 8.3.1 Уран-графитовый реактор канального типа
- 8.3.2 Легко-водный реактор
- 8.3.3 Реактор на быстрых нейтронах
- 8.4 Радиоактивные отходы
- 8.4.1. Переработка отработанного ядерного топлива (замкнутый цикл)
- 8.4.2 Переработка и захоронение отходов (открытый цикл)
- 9 Гигиенические и экологические основы радиационной защиты человека и окружающей среды
- 9.1 ОпредеЛение допустимых уровней облучения
- 9.2 Обеспечение радиационной безопасности природной среды
- 9.3 Методы защиты населения, проживающего на загрязненных радионуклидами территориях (112)
- 9.3.1. Общие принципы ведения сельского хозяйства на загрязненыйх территориях
- 9.3.2 Зональный принцип ведения сельского хозяйства
- 9.3.4 Выведение радионуклидов из организма
- Список использованной литерартуры