5.2.1. Электромагнитное загрязнение среды и его источники
Электромагниное загрязнение, по Н.Реймерсу, возникает в результате изменений электромагнитных свойств среды, приводящих к нарушениям работы электронных систем и изменениям в тонких клеточных и молекулярных биологических структурах [19]. Естественные изменения в электромагнитном фоне называют электромагнитными аномалиями. В связи с широчайшим развитием электронных систем управления, передач, связи, электроэнергетических объектов на первый план вышло антропогенное электромагнитное загрязнение – создание искусственных электромагнитных полей (ЭМП). Их влияние на нашу жизнь многообразно, но недостаточно изучено. Известны случаи полного нарушения движения поездов в Японии под влиянием внешних ЭМП. Другой пример – остановка сердца у человека с электростимулятором. У людей, постоянно проживающих под ЛЭП, фиксируется аномально высокая смертность от рака, туберкулеза и сердечно-сосудистых заболеваний. Установлены факты влияния высоковольтных линий на геомагнитные процессы и даже на грозовую активность в атмосфере. В 70-е годы прошлого столетия исследователи установили связь между повышением лейкоза у детей и воздействием магнитного поля высоковольтных линий.
В результате антропогенной деятельности увеличивается общий электромагнитный фон окружающей среды. Появились источники техногенного происхождения, отличающиеся по своим характеристикам от традиционных источников, к которым живые организму биосферы адаптировались в процессе длительной эволюции. Например, миллиметровые волны, некоторые участки радиодиапазонов, ультрафиолетовые, рентгеновские, γ-излучения, инфразвуковые и ультразвуковые колебания, сильные электростатические и магнитные поля и т.д. в существенной степени изменяют естественный фон. При этом возможно не простое наложение техногенных физических полей на естественный фон, а происходит их более сложное взаимодействие друг с другом, что существенно может влиять на устойчивость экосистем.
Современная концепция действия миллиметровых волн на биологический объект заключается в следующем:
- взаимодействие излучения с поверхностными клеточными мембранами;
- взаимодействие СВЧ поля с зарядами белковых молекул, совершающими колебания на собственных резонансных частотах;
- возникновение в мембране СВЧ поля акустического происхождения;
- мембраны создают синхронизирующие, фазирующие СВЧ поля, воздействующие на белковые молекулы;
- синхронизация и когерентное сложение колебаний белков передается колебаниям мембраны с последующим излучением энергии в межклеточное пространство.
Статическое электрическое поле также существенно влияет на живые организмы. Разряды, возникающие при стечении электрических зарядов, вызывают испуг, раздражение, могут быть причиной пожара, взрыва, травмы, порчи микроэлектронных устройств и т.п. Длительное воздействие статических электрических полей, с напряженностью поля более 1000 В/м, вызывает у человека головную боль, утомленность, нарушения обмена веществ, раздражительность.
Известно, что любое ЭМП характеризуется частотой и векторами напряженности электрического и магнитного полей.
Шкала электромагнитных волн для различных диапазонов частот ЭМП представлена на рис. 5.4, а некоторые техногенные источники электромагнитного загрязнения – в табл. 5.4.
Рис. 5.4. Шкала электромагнитных волн
*Звездочкой помечены номера поддиапазонов, установленные международным консультативным комитетом радиосвязи (МККР)
Однако для различных вариантов степень воздействия на биологические объекты может быть разной. Если ЭМП обусловлено неподвижными зарядами, то оно является электростатическим. Определяющей является напряженность электрического поля. Наоборот, для катушек с большим числом витков при постоянном токе относительное проявление магнитной составляющей выше электрической. Для ЭМП от источников, работающих на переменных токах частотой до 300 МГц, учитываются электрическая и магнитная составляющие. Этот диапазон охватывает установки промышленной частоты (50 Гц), а также радиопередающие и телевизионные устройства различных диапазонов: низкой частоты (30-300 кГц), средней (300 кГц – 30 МГц), очень высокой (30-300 МГц). Существуют и более высокие диапазоны излучения УВЧ (300-3000МГц), СВЧ (3-30 ГГц) и КВЧ (30-300 ГГц).
Таблица 5.4
Техногенные источники электромагнитного загрязнения
Название | Диапазон частот (длин волн) |
Радиотехнические объекты | 30 кГц – 30 МГц |
Радиопередающие станции | 30 кГц – 300 МГц |
Радиолокационные и радионавигационные станции | СВЧ диапазон (300 МГЦ – 300 ГГц |
Телевизионные станции | 30 МГц – 3 ГГц |
Плазменные установки | Видимый, ИК-, УФ-диапазоны |
Термические установки | Видимый, ИК-диапазон |
Высоковольтные линии электропередач | Промышленные частоты, статическое электричество |
Рентгеновские установки | Жесткий УФ, рентгеновский диапазон, видимое свечение |
Лазеры | Оптический диапазон |
Мазеры | СВЧ диапазон |
Ядерные реакторы | Рентгеновское и γ-излучение, ИК, видимое и т.п. |
Технологические установки | ВЧ, СВЧ, ИК, УФ, видимый, рентгеновский диапазоны |
Источники ЭМП специального назначения (наземные, водные, подводные, воздушные) | Радиоволны, оптический диапазон, акустические волны (комбинированного действия) |
- Ю.С. Рыбаков процессы и аппараты защиты окружающей среды
- 280202 – Инженерная защита окружающей среды Екатеринбург
- Оглавление
- Глава 1. Научные основы технологических процессов . . . 10
- 1.2.1. Теплопроводность . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
- 1.4. Процессы разделения неоднородных и гетерогенных систем . . . . . . . . . 35
- Глава 2. Защита атмосферного воздуха от загрязнения . . . 61
- Глава 3. Защита водного бассейна от загрязнения . . . . . . . . . 102
- Глава 4. Утилизация и ликвидация бытовых
- Глава 5. Защита окружающей среды от энергетического
- Предисловие
- Введение
- Глава 1. Научные основы технологических процессов
- 1.1. Основные понятия и законы природоохранных технологий
- 1.1.1. Два вида переноса вещества и энергии
- Это уравнение будем называть материальным балансом. Из уравнения (1.1) видно, что в процессе производства происходит перенос массы из одних компонентов, входящих в аппарат, в другие.
- 1.1.2. Движущая сила технологического процесса
- 1.1.3. Закономерности переноса массы и энергии
- 1.1.4. Классификация и принципы оптимизации основных
- Классификация основных процессов природоохранных технологий
- 1.2. Теплообменные процессы
- 1.2.1. Теплопроводность
- 1.2.2. Конвекция
- 1.2.3. Тепловое излучение
- 1.2.4. Теплоносители и их свойства
- 1.2.5. Теплоотдача при конденсации пара
- 1.2.6. Теплопередача при кипении жидкостей
- 1.2.7. Процессы выпаривания
- 1.3. Массообменные процессы
- 1.3.1. Массопередача, массоотдача и массопроводность
- 1.3.2. Абсорбция
- 1.3.3. Ректификация
- 1.3.4. Адсорбция
- 1.3.5. Ионный обмен
- 1.3.6. Экстракция
- 1.3.7. Сушка
- 1.3.8. Кристаллизация
- 1.4. Процессы разделения неоднородных и гетерогенных систем
- 1.4.1. Классификация неоднородных и гетерогенных систем
- Классификация неоднородных и гетерогенных систем
- 1.4.2. Процессы осаждения под действием силы тяжести
- 1.4.3. Фильтрование
- 1.4.4. Коагуляция и флокуляция
- 1.4.5. Флотация
- 1.5. Химические и биохимические процессы, протекающие при очистке вод
- 1.5.1. Химические процессы
- 1.5.2. Сущность отдельных химических процессов и их роль
- 1.5.3. Биохимические процессы
- 1.6. Воздействие транспорта на окружающую среду
- 1.6.1. Влияние предприятий железнодорожного транспорта
- 1.6.2. Основные процессы, протекающие при воздействии
- 1.6.3. Характеристика топлив, используемых на объектах транспорта
- 1.6.4. Характеристика основных токсичных веществ, содержащихся
- Глава 2. Защита атмосферного воздуха от загрязнения
- 2.1. Общие вопросы защиты атмосферы от загрязнения
- 2.1.1. Источники загрязнения атмосферы
- 2.1.2. Нормирование качества атмосферного воздуха
- Предельно допустимые концентрации некоторых веществ в воздухе, мг/м3
- 2.1.3. Классификация источников загрязнения
- 2.2. Пассивные методы защиты атмосферы от загрязнения
- 2.2.1. Стадия проектирования предприятия
- 2.2.2. Инвентаризация и расчет предельно допустимых выбросов
- 2.2.3. Установление санитарно-защитной зоны вокруг предприятия
- 2.2.4. Расчет высоты трубы для рассеивания газовоздушных выбросов
- 2.3. Методы очистки отходящих газов от аэрозолей
- 2.3.1. Сухие пылеуловители
- 2.3.2. Мокрые пылеуловители
- 2.3.3. Электрофильтры
- 2.3.4. Фильтры
- 3.6. Туманоуловители
- 2.4. Очистка промышленных выбросов от токсичных газовых примесей
- 2.4.1. Метод абсорбции
- 2.4.2. Метод хемосорбции
- 2.4.3. Адсорбционные методы
- 2.4.4. Методы каталитической очистки газов
- 2.4.5. Метод термической очистки газов
- 2.5. Методы и устройства для очистки выхлопных газов карбюраторных и дизельных двигателей
- 2.5.1. Нейтрализаторы отработавших газов
- 2.5.2. Фильтры для улавливания дисперсных частиц
- 2.5.3. Использование новых рабочих процессов и видов энергоресурсов
- 2.5.4. Очистка отработавших газов при реостатных
- Глава 3. Защита водного бассейна от загрязнения
- 3.1. Общие вопросы защиты водных объектов от загрязнения
- 3.1.1. Характеристика водопользования и водопотребления
- 3.1.2. Критерии качества воды
- Критерии оценки загрязненности воды по пдк вредных веществ
- 3.1.3. Качество вод, используемых в промышленности
- 3.2. Пассивные методы защиты гидросферы от загрязнения
- 3.2.1. Особенности канализования сточных вод
- 3.2.2. Условия выпуска производственных сточных вод
- 3.2.3. Расчет предельно допустимого сброса вредных веществ
- 3.2.4. Установление водоохранных зон и прибрежных защитных полос
- 3.3. Классификация сточных вод
- 3.3.1. Классификация по принципу допустимости
- 3.3.2. Классификация сточных вод по дисперсному составу примесей
- 3.3.3. Классификация сточных вод в зависимости
- 4. Механические (физические) методы очистки сточных вод
- 3.4.1. Процеживание и отстаивание примесей
- 4.2. Осветление сточных вод, улавливание жиров и нефтепродуктов
- 4.3. Фильтрование
- 4.4. Гидроциклонирование
- 3.5. Химические, физико-химические и биологические методы очистки и обезвреживания сточных вод
- 3.5.1. Химическая очистка сточных вод
- 3.5.2. Физико-химические методы очистки
- 3.5.3. Методы биологической очистки сточных вод
- 3.5.4. Методы биологической очистки сточных вод
- 3.5.5. Доочистка сточных вод
- Глава 4. Утилизация и ликвидация твердых отходов
- 4.1. Опасность отходов для окружающей природной среды
- 4.1.1. Источники возникновения твердых отходов
- 4.1.2. Классификация отходов
- 4.1.3. Нормирование допустимого количества отходов
- Классификация опасности отходов производства
- 4.2. Основные технологические принципы утилизации, обезвреживания и захоронения отходов
- 2.1. Размещение отходов
- 4.2.2. Переработка отходов на месте складирования
- 4.2.3. Переработка отходов пластических масс
- 4.2.4. Сжигание отходов
- 4.2.5. Обезвреживание и захоронение радиоактивных отходов
- 4.3. Утилизация и ликвидация осадков сточных вод
- 4.3.1. Технологический цикл обработки осадков сточных вод
- 4.3.2. Уплотнение, стабилизация и кондиционирование осадков
- 4.3.3. Обезвоживание и ликвидация осадков сточных вод
- Глава 5. Защита окружающей среды от энергетического воздействия
- 5.1. Защита окружающей среды от шума и вибраций
- 5.1.1. Шум и его характеристики
- 5.1.2. Нормирование шума
- 5.1.3. Расчет шумовых характеристик
- 5.1.4. Меры борьбы с шумовым загрязнением
- 5.2. Защита от электромагнитного загрязнения
- 5.2.1. Электромагнитное загрязнение среды и его источники
- 5.2.2. Предельно допустимые уровни электромагнитных полей
- 5.2.3. Защита от электромагнитных полей
- Заключение
- Библиографический список
- 620034, Екатеринбург, ул. Колмогорова, 66 УрГупс
- Ю.С. Рыбаков
- Процессы и аппараты защиты
- Окружающей среды
- Екатеринбург