Завтра и вчера
Добавляются одноместные операции T(завтра) и Y(вчера), и новое правило для построения формул:
Если А – формула, то TA и YA – формулы. Семантика в модели M = (Z, <, h):
M, t |= TA, если и только если M, t+1 |= A;
M, t |= YA, если и только если M, t-1 |= A.
Вместо TA применяются также записи Next A, 0A, XA.
Since, Until
Для любых формул А и В добавляются формулы ASB и AUB. Семантика в модели M = (W, <, h):
M, t |= AUB, если и только если для некоторого u > t верно M, u |= B и при всех v, удовлетворяющих соотношениям t < v < u, верно M, v |= A (иными словами, А верно до тех пор, пока не В);
M, t |= ASB, если и только если для некоторого u > t верно M, u |= B, а для всех v, удовлетворяющих соотношениям u < v < t, верно M, v |= A (с тех пор, как случилось В, верно А).
- 6. Модальная и темпоральная логикИ
- 6.1. Синтаксис модальной логики
- Дополнительные логические связки
- Приоритеты операций
- Смысловые значения модальностей
- 6.2. Семантика модальной логики
- Модели Крипке
- Упражнение 1
- Упражнение 2
- Семантика темпоральной логики
- Упражнение 3
- Тавтологии
- Упражнение 4
- Условные тавтологии
- Упражнение 5
- 6.3. Алгоритмическая логика Хоара
- Пропозициональная динамическая логика
- Семантика пропозициональной динамической логики
- Аксиомы pdl
- Правила вывода
- Логика Хоара
- Корректность и полнота систем Гильберта
- Свойства шкал Крипке
- Алгоритм Салквиста
- Пример 2
- Пример 3
- Пример 6
- 6.5. Темпоральная логика
- Система Гильберта для темпоральной логики
- Линейные потоки времени
- Стандартный перевод
- Завтра и вчера
- Выбор операторов
- 7. Алгоритмы и рекурсивные функции
- 7.1. Частично рекурсивные функции
- Простейшие функции
- Пример 1
- Оператор примитивной рекурсии
- Пример 2
- Пример 4
- Пример 5
- Пример 6
- Оператор минимизации
- Пример 7
- 7.2. Машины Тьюринга
- Пример 1
- Пример 2
- Пример 3
- Упражнение
- 7.3. Вычислительная сложность
- Труднорешаемые и np-полные задачи
- 6. Модальная и темпоральная логикИ 49
- 7. Алгоритмы и рекурсивные функции 65