Оператор примитивной рекурсии
Пусть заданы частичные функции g: Nn N и h: Nn+2 N. Оператором примитивной рекурсии называется оператор, сопоставляющий паре (g, h) такую частичную функцию f: Nn+1 N, что для всех x1,…,xn,у N имеют место равенства:
f(x1,…,xn,0) = g(x1,…,xn);
f(x1,…,xn,y+1) = h(x1,…,xn,y, f(x1,…,xn,y)).
Поскольку область определения и значения дополняются отмеченной точкой, то равенство частичных функций означает, что для каждого значения аргумента либо левая, либо правая части равенства определены и равны между собой, либо обе его части не определены. Значение оператора примитивной рекурсии обозначается: f = R(g,h). Если g и h определены всюду, то f = R(g,h) определена всюду.
Если n = 0, то для любых числа g N и частичной функции h: N2 N частичная функция f = R(g,h) определяется с помощью равенств:
f(0) = g, f(y + 1) = h(y,f(y)).
Функция f называется примитивно рекурсивной, если ее можно получить из простейших функций s, o и Inm с помощью операторов суперпозиции и примитивной рекурсии (таким образом, примитивно рекурсивная функция всюду определена.)
- 6. Модальная и темпоральная логикИ
- 6.1. Синтаксис модальной логики
- Дополнительные логические связки
- Приоритеты операций
- Смысловые значения модальностей
- 6.2. Семантика модальной логики
- Модели Крипке
- Упражнение 1
- Упражнение 2
- Семантика темпоральной логики
- Упражнение 3
- Тавтологии
- Упражнение 4
- Условные тавтологии
- Упражнение 5
- 6.3. Алгоритмическая логика Хоара
- Пропозициональная динамическая логика
- Семантика пропозициональной динамической логики
- Аксиомы pdl
- Правила вывода
- Логика Хоара
- Корректность и полнота систем Гильберта
- Свойства шкал Крипке
- Алгоритм Салквиста
- Пример 2
- Пример 3
- Пример 6
- 6.5. Темпоральная логика
- Система Гильберта для темпоральной логики
- Линейные потоки времени
- Стандартный перевод
- Завтра и вчера
- Выбор операторов
- 7. Алгоритмы и рекурсивные функции
- 7.1. Частично рекурсивные функции
- Простейшие функции
- Пример 1
- Оператор примитивной рекурсии
- Пример 2
- Пример 4
- Пример 5
- Пример 6
- Оператор минимизации
- Пример 7
- 7.2. Машины Тьюринга
- Пример 1
- Пример 2
- Пример 3
- Упражнение
- 7.3. Вычислительная сложность
- Труднорешаемые и np-полные задачи
- 6. Модальная и темпоральная логикИ 49
- 7. Алгоритмы и рекурсивные функции 65