logo search
МЛиТА 6 - 7

6.2. Семантика модальной логики

Под семантикой понимается метод интерпретаций формул как истинных или ложных. Поскольку слова можно толковать по-разному, то выделяются семантики, удовлетворяющие дополнительным условиям. В частности, выделяются семантики, для которых истинна формула:

(p  q)  (p  q).

Такие семантики относятся к нормальным. Рассмотрим одну из них.

Семантика Крипке

Рассматривается множество миров. Модальное высказывание А считается истинным, если А истинно в некоторых из возможных миров. Истинность обычных формул измеряется по отношению к текущему миру. (Идея принадлежит Лейбницу, и была разработана Сеулом Крипке).

Возьмём произвольное множество W; его элементы будем называть мирами или состояниями. Рассмотрим произвольное бинарное отношение R на W. Если значение предиката R(t, w) равно 1, то w называется возможным или доступным миром для t.

Определение. Пара множеств (W, R), где W – непустое множество, а RWW – бинарное отношение на W, называется шкалой Крипке. Отношение R называется отношением доступности.

Пример 1

Пусть W = {1, 2, 3, 4, 5}, R = {(1, 1), (1, 2), (2, 3), (1, 5), (5, 4), (4, 4), (4, 3)}. Шкалу Крипке (W, R) можно рассматривать как ориентированный граф, вершинами которого служат элементы из W, а рёбрами – пары, принадлежащие R. Например, для мира 1 будут доступны миры 1, 2 и 5, ибо (1, 1), (1, 2) и (1, 5) принадлежат R.

Пример 2

Каждое частично упорядоченное множество (Х, ) будет шкалой Крипке, имеющей множество миров Х и отношение доступности . В частности, N = (, ), (Z, ), (Q, ), (R, ) – множества натуральных, целых, рациональных и действительных чисел, с обычным отношением порядка будут составлять шкалы Крипке.

Пример 3

Существуют шкалы с циклами, например, W = {1, 2, 3, 4} с отношением R = {(1, 2), (2, 3), (3, 4), (4, 1)}.

Можно привести искусственные примеры, такие, как шкала рекурсии Макинсона (, R), где R состоит из пар (m, n), для которых m  n + 1.