7.4. Кинетика биохимического окисления
Скорость биохимических реакций определяется активностью ферментов, которая зависит от температуры, рН и присутствия в сточной воде различных веществ.
Ферменты, представляющие собой сложные белковые соединения, выполняют роль ускоряющих катализаторов. С повышением температуры скорость ферментативных процессов повышается, но до определенного предела. Для каждого фермента имеется оптимальная температура, выше которой скорость реакции падает. К числу веществ-активаторов, повышающих активность ферментов, относятся многие витамины и катионы Са2+, Мg2+, Мn2+. В то же время соли тяжелых металлов, синильная кислота, антибиотики являются ингибиторами, т.е. снижают активность ферментов.
Микроорганизмы способны окислять многие органические вещества, но для этого требуется разное время адаптации. Легко окисляются бензойная кислота, этиловый и амиловый спирты, гликоли, хлоргидриды, ацетон, глицерин, анилин, сложные эфиры.
Вещества, находящиеся в сточных водах в коллоидном или мелкодисперсном состоянии, окисляются с меньшей скоростью, чем вещества, растворенные в воде.
Уравнение кинетики ферментативных реакций предложено Михаэлисом и Ментеном. Оно определяет скорость протекания реакций внутри клеток микроорганизмов;
V = Vмакс[S]/(Kм+[S]), (7.1)
где V = dP/d - скорость образования продукта Р из вещества S; Vмакс - максимальное значение скорости; Kм - константа Михаэлиса-Ментена, моль/л.
Константа Kм характеризует зависимость скорости ферментативной реакции от концентрации субстрата в стационарном состоянии процесса.
Для окисления органических веществ микроорганизмами необходим кислород, но они могут его использовать только в растворенном в воде виде. Для насыщения сточной воды кислородом проводят процесс аэрации, разбивая воздушный поток на пузырьки, равномерно распределяя их в сточной воде. Из пузырьков воздуха кислород абсорбируется водой, а затем переносится к микроорганизмам.
Количество абсорбируемого кислорода может быть вычислено по уравнению массоотдачи:
М = V.V(Ср - С), (7.2)
где М - количество абсорбированного кислорода, кг/с; V - объемный коэффициент массоотдачи, c-1; V - объем сточной воды в сооружении, м3; Ср, С - равновесная концентрация и концентрация кислорода в массе жидкости, кг/м3.
Количество абсорбируемого кислорода может быть увеличено за счет роста коэффициента массоотдачи или движущей силы.
На скорость биохимического окисления влияет турбулизация сточных вод в очистных сооружениях, что способствует распаду хлопьев активного ила на более мелкие и увеличивает скорость поступления питательных веществ и кислорода к микроорганизмам. Турбулизация потока достигается интенсивным перемешиванием, при котором активный ил находится во взвешенном состоянии, что обеспечивает равномерное распределение его в сточной воде.
Доза активного ила зависит от «илового индекса». Чем меньше «иловый индекс», тем большую дозу активного ила необходимо подавать на очистные сооружения. Для очистки следует применять свежий активный ил, который хорошо оседает и более устойчив к колебаниям температуры и рН среды.
Наиболее оптимальная температура биохимической очистки сточных вод поддерживается в пределах 20…30С. Превышение температуры может привести к гибели микроорганизмов. При более низких температурах снижается скорость очистки, замедляется процесс адаптации микробов к новым видам загрязнений, ухудшаются процессы флокуляции и осаждения активного ила.
- Глава 1. Основные физико-химические свойства
- Глава 2. Характеристики загрязнений окружающей среды и
- 3.13. Процессы рассеивания выбросов в атмосфере.
- Глава 4. Процессы массообмена.
- Глава 5. Химические процессы защиты окружающей среды.
- 5.2.1. Нейтрализация сточных вод.
- Глава 6. Физико-химические процессы защиты окружающей среды.
- Глава 7. Биохимические процессы защиты окружающей среды.
- Глава 8. Тепловые процессы защиты окружающей среды
- 8.3.1. Концентрирование растворов сточных вод.
- Глава 9. Механические процессы защиты литосферы.
- Глава 10. Процессы защиты окружающей среды
- Предисловие
- Раздел 1. Основные физико-химические закономерности защиты окружающей среды.
- Введение
- Глава 1. Основные физико-химические свойства
- 1.1. Агрегатные состояния вещества
- 1.3. Объединенный газовый закон
- 1.4. Основные понятия и законы термодинамики
- 1.5. Смачивание и капиллярные явления
- 1.6. Коллоидные системы
- Классификация дисперсных систем по агрегатному состоянию дисперсной фазы и дисперсионной среды
- 1.7. Поверхностные явления
- 1.8. Растворенное состояние веществ
- 1.9. Кинетика химических процессов
- 1.10. Свойства переноса в многокомпонентных системах
- 1.11. Кинетика гетерогенных процессов
- 1.12. Составы многокомпонентных систем
- Глава 2. Характеристики загрязнений окружающей среды и основные методы ее защиты
- Выбросы вредных веществ в атмосферный воздух от стационарных
- 2.4. Основные свойства аэрозолей
- Дисперсный состав пыли
- Фракции пыли с частицами меньше или больше заданного размера
- Слипаемостъ пыли
- 2.5. Вредные газы и пары
- 2.6. Классификация вод и свойства водных дисперсных систем
- 2.7. Классификация промышленных отходов
- 2.8. Энергетическое загрязнение окружающей среды
- 2.9. Основные процессы инженерной защиты окружающей среды от техногенных загрязнений
- 2.10. Методы очистки пылевоздушных выбросов
- 2.11. Способы очистки газовых выбросов
- 2.13. Методы защиты литосферы
- 2.15. Общие принципы интенсификации технологических процессов
- Глава 3. Гидромеханические процессы очистки газовых выбросов и жидкостных сбросов
- 3.1. Основные закономерности движения и осаждения аэрозолей
- 3.2. Гравитационное осаждение аэрозолей
- Зависимость коэффициента сопротивления от режима движения
- Скорости осаждения и броуновского смещения малых частиц
- В области Reч 0,25 всплывание частиц происходит по зависимости Стокса:
- 3.4. Инерционное осаждение частиц аэрозолей
- 3.5. Центробежное осаждение частиц аэрозолей
- Сопоставляя эти равенства, найдем
- 3.8. Фильтрование сточных вод
- Сопротивление слоя осадка равно
- Уравнение фильтрования при постоянных разности давлений и скорости.
- 3.12. Процессы мокрой газоочистки
- Значения коэффициента диффузии частиц и критерия Шмидта от размера частиц аэрозоля
- 3.13. Процессы рассеивания выбросов в атмосфере
- 3.14. Диффузионные процессы рассеивания в атмосфере
- Профиль скорости ветра описывается формулой
- 3.16. Изменение концентрации примесей в атмосфере
- - Для t 0 - нагретые выбросы
- 3.17. Разбавление примесей в гидросфере
- 3.18. Разбавление сточных вод при спуске в водоемы
- Глава 4. Процессы массообмена
- 4.1. Абсорбция газовых примесей
- 4.1.1. Растворы газов в жидкостях
- Количество выделяющегося при абсорбции тепла составляет
- Общий расход абсорбента равен
- Откуда получим
- 4.2. Адсорбция газовых примесей
- 4.2.1. Теория адсорбции
- 4.2.3. Механизм процесса адсорбции
- 4.2.4. Равновесие при адсорбции
- 4.2.5. Материальный баланс процесса адсорбции
- 4.2.6. Кинетика адсорбции
- Число единиц переноса определяют из выражения
- Величину масштабов можно определить по формуле
- 4.2.7. Десорбция из адсорбентов поглощенных примесей
- Общее уравнение скорости кристаллизации имеет вид
- Глава 5. Химические процессы защиты окружающей среды
- 5.1. Каталитические процессы очистки газовых выбросов
- 5.1.1. Теория катализа
- 5.1.2. Кинетика реакций гетерогенного катализа.
- 5.2.1. Нейтрализация сточных вод
- 5.2.2. Окисление загрязнителей сточных вод
- 5.2.3. Очистка сточных вод восстановлением
- 5.2.4. Химическая очистка сточных вод от ионов тяжелых металлов
- 5.3. Дезодорация и химическая дегазация сточных вод
- Глава 6. Физико-химические процессы защиты окружающей среды
- 6.1. Осаждение частиц аэрозолей в электрическом поле
- 6.2. Термофорез взвешенных частиц аэрозолей
- 6.3. Коагуляция в аэрозолях
- 6.4. Физико-химические процессы очистки сточных вод
- 6.4.2. Процессы флотационной очистки сточных вод
- 6.4.3. Пенная сепарация поверхностно-активных веществ
- Степень извлечения пав пеной равна
- 6.4.4. Процесс ионного обмена в растворах
- Ионообменное равновесие. Функциональную зависимость противоионного состава ионита от противоионного состава внешнего раствора при постоянных температуре и давлении называют изотермой ионного обмена.
- С точная
- Обратного осмоса; 3 – мембрана; 4 – выпускной клапан.
- 6.4.6. Электрохимические процессы очистки сточных вод
- Глава 7. Биохимические процессы защиты окружающей среды
- 7.1. Основные показатели биохимических процессов очистки сточных вод
- 7.2. Аэробный метод биохимической очистки
- 7.3. Механизм биохимического распада органических веществ
- 7.4. Кинетика биохимического окисления
- 7.5. Анаэробные методы биохимической очистки
- Метан может образовываться в результате распада уксусной кислоты
- 7.6. Обработка осадков сточных вод
- Глава 8. Тепловые процессы защиты окружающей среды
- 8.3. Термические процессы обработки сточных вод
- 8.3.1. Концентрирование растворов сточных вод
- 8.3.2. Термоокислительное обезвреживание сточных вод
- 8.4.3. Сушка влажных материалов
- Глава 9. Механические процессы защиты литосферы
- Классификация методов измельчения
- Глава 10. Процессы защиты окружающей среды
- 10.1. Теоретические основы защиты от энергетических воздействий
- Т.К. При 1 коэффициент ρ 0, то методы поглощения используют для уменьшения отраженного потока энергии; при этом источник и приемник энергии обычно находятся с одной стороны от зу.
- Сила fm направлена в сторону, противоположную ускорению.
- 10.4. Защита от электромагнитных полей и излучений
- Радиус дальней зоны составляет