logo
Уч

6.4.4. Процесс ионного обмена в растворах

Ионообменная очистка применяется для извлечения из сточных вод тяжелых металлов (цинка, меди, хрома, никеля, свинца, ртути, кадмия, ванадия, марганца), а также соединений мышьяка, фосфора, цианистых соединений и радиоактивных веществ. Метод позволяет рекуперировать ценные вещества при высокой степени очистки воды. Ионный обмен широко распространен при обессоливании в процессе водоподготовки.

Сущность ионного обмена. Ионный обмен представляет процесс взаимодействия раствора с твердой фазой, обладающей свойствами обменивать ионы, содержащиеся в ней, на другие ионы, присутствующие в растворе. Вещества, составляющие эту твердую фазу, называются ионитами. Они практически не растворимы в воде. Те из них, которые способны поглощать из растворов электролитов положительные ионы, являются катионитами, поглощать отрицательные ионы – анионитами. Катиониты обладают кислотными свойствами, а аниониты – основными свойствами. Если иониты обменивают и катионы, и анионы, их называют амфотерными.

Поглотительная способность ионитов характеризуются обменной емкостью, которая определяется числом эквивалентов ионов, поглощаемых единицей массы или объема ионита. Различают полную, статическую и динамическую обменные емкости. Полная емкость – это количество поглощаемого вещества при полном насыщении единицы объема или массы ионита. Статическая емкость – это обменная емкость ионита при равновесии в данных рабочих условиях. Статическая обменная емкость обычно меньше полной. Динамическая обменная емкость – это емкость ионита до “проскока” ионов в фильтрат, определяемая в условиях фильтрации. Динамическая емкость меньше статической.

Природные и синтетические иониты. Иониты бывают неорганические (минеральные) и органические. Это могут быть природные вещества или искусственно полученные вещества.

К неорганическим природным ионитам относятся цеолиты, глинистые минералы, полевые шпаты, различные слюды. Их катионообменные свойства обусловлены содержанием алюмосиликатов типа Na2OAl2O3nSiO2mH2O. Ионообменными свойствами обладает также фторапатит [Ca5(PO4)3]F и гидроксидапатит. К неорганическим синтетическим ионитам относятся силикагели, пермутиты, труднорастворимые оксиды и гидроксиды некоторых металлов (алюминия, хрома, циркония). Катионообменные свойства, например силикагеля, обусловлены обменом ионов водорода гидроксидных групп на катионы металлов, проявляющиеся в щелочной среде. Катионообменными свойствами обладают и пермутиты, получаемые сплавлением соединений, содержащих алюминий и кремний. Органические природные иониты – это гуминовые кислоты почв и углей. Они проявляют слабокислотные свойства. Для усиления кислотный свойств и обменной емкости угли измельчают и сульфируют в избытке олеума.

Сульфоугли являются дешевыми полиэлектролитами, содержащими сильно- и слабокислотные группы. К недостаткам таких ионитов относится их малая химическая стойкость и низкая механическая прочность зерен, а также небольшая обменная емкость, особенно в нейтральных средах.

К органическим искусственным ионитам относятся ионообменные смолы с развитой поверхностью. Они имеют наибольшее практическое значение для очистки сточных вод. Синтетические ионообменные смолы представляют собой высокомолекулярные соединения, углеводородные радикалы которых образуют пространственную сетку с фиксированными на ней ионообменными функциональными группами. Пространственная углеводородная сетка (каркас) называется матрицей, а обменивающиеся ионы – противоионами. Каждый противоион соединен с противоположно заряженными ионами, называемыми фиксированными, или анкерными. Полимерные углеводородные цепи, являющиеся основой матрицы, связаны (сшиты) между собой поперечными связями, что придает прочность каркасу. При сокращенном написании ионита матрицу обозначают в общем виде ( R ), а активную группу указывают полностью. Например, сульфокатиониты записывают как RSO3H. Здесь R – матрица, H – противоион, SO3 – анкерный ион.

Иониты, содержащие одинаковые активные группы, называются монофункциональными, а иониты, которые содержат функциональные группы различной химической природы – полифункциональными. Они могут обладать смешанными сильно- и слабоосновными свойствами.

Катиониты в качестве противоионов могут содержать не ионы водорода, а ионы металлов, т.е. находиться в солевой форме. Точно так же и аниониты могут быть в солевой форме, если в качестве противоионов они содержат не ионы гидроксида, а ионы кислот.

Свойства ионитов. При нагревании ионитов в воде и на воздухе возможно разрушение их зерен, отщепление активных групп, что приводит к уменьшению их емкости. Для каждой смолы имеется температурный предел, выше которого ее использовать нельзя. Термическая устойчивость анионитов ниже, чем катионитов.

Величина рН сточной воды, при которой происходит обмен ионами, зависит от константы диссоциации ионообменных групп смолы. Сильнокислотные катиониты позволяют проводить процесс в любых средах, а слабокислотные – в щелочных и нейтральных средах.

Иониты в контакте с водой не растворяются, но поглощают некоторое количество воды и набухают, являясь гелями с ограниченной набухаемостью. При этом размер микропор возрастает, объем ионитов увеличивается в 1,5…3 раза. Степень набухания зависит от строения смолы, природы противоионов, от состава раствора. Набухание ионитов влияет на скорость и полноту обмена ионов, а также на селективность ионита. Оно прекращается после того, как разность осмотических давлений до и после обмена уравновесится силами растяжения и сжатия ионита.

Сильно набухающие смолы, называемые гелеобразными, имеют удельную обменную поверхность 0,1…0,2 м2/г. Макропористые иониты обладают развитой обменной поверхностью, равной 60…80 м2/г. Синтетические иониты набухают в воде больше и имеют большую обменную емкость, чем природные. Срок службы синтетических катионитов значительно больше, чем анионитов.

Селективность ионного обмена зависит от величины давления набухания в порах смолы и от размера пор ионита. При малом размере пор большие ионы не могут достичь внутренних активных групп. В целях повышения селективности ионитов к определенным металлам в состав смолы вводят вещества, способные образовывать с ионами этих металлов внутрикомплексные соединения (хелаты).

Основы процесса ионного обмена. Ионный обмен происходит в эквивалентных отношениях и является чаще всего обратимым. Реакции ионного обмена протекают вследствие разности химических потенциалов обменивающихся ионов. В общем виде эти реакции можно представить как:

m A+RmB mRA+B. (6.47)

Реакция ионного обмена протекает следующим образом:

- при контакте с катионитом

R SO3H+NaCl RSO3Na+HCl (6.48)

- при контакте с анионитом

R OH+NaCl RСl+NaOH. (6.49)

Реакция идет до установления ионообменного равновесия. Скорость установления равновесия зависит от внешних и внутренних факторов: гидродинамического режима жидкости; концентрации обменивающихся ионов; структуры зерен ионита; его проницаемости для ионов.

Процесс переноса вещества может быть представлен в виде нескольких стадий:

  1. перенос ионов А из ядра потока жидкости к внешней поверхности пограничной жидкой пленки, окружающей зерно ионита;

  2. диффузия ионов через пограничный слой;

  3. переход иона через границу раздела фаз в зерно смолы;

  4. диффузия ионов А внутри зерна смолы к ионообменным функциональным группам;

  5. химическая реакция двойного обмена ионов А и В;

  6. диффузия ионов В внутри зерна ионита к границе раздела фаз;

  7. переход ионов В через границу раздела фаз на внутреннюю поверхность пленки жидкости;

  8. диффузия ионов В через пленку;

  9. диффузия ионов В в ядро потока жидкости.

Скорость ионного обмена определяется самой медленной из этих стадий – диффузией в пленке жидкости либо диффузией в зерне ионита. Химическая реакция ионного обмена происходит быстро и не определяет суммарную скорость процесса.