3.12. Процессы мокрой газоочистки
Процесс мокрого пылеулавливания основан на контакте запыленного газового потока с жидкостью, которая захватывает взвешенные частицы и уносит их из аппарата в виде шлама.
Технологический анализ, ведущий к разработке моделей функционирования газоочистных устройств, базируется на представлениях о механизмах процессов. Механизмы процессов - это основные варианты контактов газ - жидкость, при которых происходит удаление частиц из газа. Существуют следующие механизмы процессов:
1) улавливание каплями жидкости, двигающимися через газ;
2) улавливание цилиндрами (обычно твердыми, типа проволок);
3) улавливание пленками жидкости (обычно текущими по твердым поверхностям);
4) улавливание в пузырях газа (обычно поднимающихся в жидкости);
5) улавливание при ударе газовых струй о жидкие или твердые поверхности.
При каждом аппаратном механизме частицы отделяются от газа благодаря одному или нескольким механизмам улавливания: гравитационной седиментации, центробежному осаждению, инерции и касанию, броуновской диффузии, термофорезу, диффузиофорезу, электростатическому осаждению. Скорость осаждения может быть увеличена благодаря укрупнению частиц вследствие агломерации и конденсационного роста.
Рассмотрим основные механизмы и зависимости, характеризующие осаждение пылевых частиц на каплях. При мокрой пылеочистке частицы удаляют по одному или нескольким основным механизмам. Рассмотрим существенные при орошении аэрозолей механизмы удаления частиц.
1. Гравитационная седиментация. Этот механизм не имеет большого значения применительно к скрубберам.
2. Центробежное осаждение. Частицы могут быть выброшены из газового потока центробежной силой, обусловленной изменением направления течения. Крупномасштабные изменения направления течения, какие наблюдаются в циклонах, малоэффективны для удаления частиц диаметром менее 5 мкм.
3. Инерционный захват и касание. При обтекании малого объекта газовым потоком инерция вынуждает частицы продолжать перемещаться по направлению к объекту, причем некоторые из них осаждаются на нем. Фактически это то же самое, что центробежное осаждение, и различие в определениях дается по традиции. Инерционный захват обусловлен изменениями направления течения в малом масштабе. Поскольку инерционное осаждение эффективно для улавливания частиц диаметром порядка всего десятых микрометра, это наиболее важный механизм захвата частиц в мокрой газоочистке.
4. Броуновская диффузия. Когда частицы достаточно малы, например, имеют диаметр менее 0,1 мкм, они смещаются под ударами газовых молекул подобно самим молекулам. Поэтому эти частицы диффундируют случайным образом через газ вследствие броуновского движения. В общем инерционное осаждение и броуновская диффузия являются главными механизмами улавливания частиц скрубберами. Для частиц диаметром свыше 0,3 мкм более важно инерционное осаждение, его эффективность растет с увеличением размера частиц. При диаметре частиц, меньшем 0,3 мкм, начинает преобладать диффузия, эффективность которой растет с уменьшением размера.
5. Термофорез. При наличии теплопередачи от газа к жидкости должен существовать соответствующий градиент температуры, тогда частицы смещаются к холодной поверхности из-за разности интенсивности бомбардировки газовыми молекулами с разных направлений. Этот эффект редко имеет большое значение в скрубберах.
6. Диффузиофорез. Массоперенос в скруббере, который может заключаться в конденсации водяного пара на холодной поверхности воды, приводит к появлению силы, под действием которой частицы осаждаются на поверхности. Такое осаждение может быть значительным, а доля удаленных частиц примерно равной доле конденсата.
7. Электростатическое осаждение. Если частицы несут электростатический заряд, то они могут быть осаждены из газового потока под действием градиента заряда. Этот механизм обеспечивает высокую эффективность улавливания частиц всех размеров.
8. Конденсация на частицах. Хотя этот процесс сам по себе не является механизмом улавливания, увеличение массы частиц вследствие пленочной конденсации водяного пара на них повышает эффективность инерционного осаждения. Это явление может происходить одновременно с диффузиофорезом и термофорезом при конденсации в скрубберах. Комбинацию этих механизмов обозначают как градиентно-силовое-конденсационное (ГСК) улавливание.
9. Коагуляция. Частицы могут слипаться при столкновениях вследствие броуновского движения или турбулентности. Коагуляция или агломерация может приводить к увеличению размера частиц и повышению эффективности осаждения, но не по диффузионному механизму.
При обтекании газопылевым потоком шаровой капли жидкости траектории движения газа и пылевых частиц расходятся вследствие различной величины сил инерции, действующих на газ и на частицы с разной массой. Крупные частицы в меньшей мере, чем газ, изменяют свое направление при подходе к капле и осаждаются на ней (рис. 3.16). Схема близка к процессу инерционного осаждения и фильтрационного осаждения частиц на элементах волокнистого фильтра, имеющих цилиндрическую форму. Объясняется это тем, что в этих случаях рассматривается двухфазный поток и действуют силы инерции.
Мелкие частицы, следуя вместе с газом, огибают каплю и уходят с потоком газа. У этих частиц инерция недостаточна для преодоления сопротивления газа.
Эффективность инерционного осаждения пылевых частиц на капле жидкости зависит от критерия Стокса. Действие сил инерции реально проявляется в отношении частиц диаметром свыше 1 мкм.
Рис. 3.16. Движение запыленного газа при обтекании шарообразной капли:
————— линии движения потока;
— — — траектории центров частиц пыли.
Для шаровых частиц пыли размером dч эффективность инерционного осаждения на каплях может быть выражена зависимостью
и = f(dч2 v0 0/18 0 dк ), (3.115)
где v0 - скорость потока, м/с; 0 - динамическая вязкость газа, Па.с; dк - диаметр капель, м.
При значении Stk 0,1 эффективность осаждения на каплях можно определить по эмпирической формуле:
Stk = Stk2/(Stk + 0,125)2. (3.116)
Кроме инерционного осаждения, на каплях имеет место осаждение диффузионное, под действием электростатических сил. Однако роль их по сравнению с инерционным осаждением очень незначительна, а для частиц более 0,2 мкм может не учитываться.
Частицы малых размеров (менее 0,1 мкм) подвержены воздействию броуновского (теплового) движения молекул. Перемещение частиц в этом случае описывается уравнением Эйнштейна (2.6).
При справедливости закона Стокса, когда размер частиц больше среднего пути пробега молекул, коэффициент диффузии частиц можно выразить как функцию размера частиц:
, (3.117)
где Tг - абсолютная температура газа, К; kБ - постоянная Больцмана, равная 1,3810-23 Дж/К.
При коэффициент диффузии может быть рассчитан по уравнению, предложенному Ленгмюром:
, (3.118)
где pг, Rг, Mг – абсолютное давление (Па), универсальная газовая постоянная Дж/(кмоль.К); молекулярный вес газа, кмоль.
Коэффициент диффузии Dч, входит в безразмерный комплекс, характеризующий отношение сил внутреннего трения к диффузионным силам. Этот комплекс получил название критерия Шмидта Sc, иногда называемого диффузионным критерием PrD:
. (3.119)
Другим критерием, используемым в практике диффузионных расчетов, является критерий Пекле Ре, представляющий собой отношение конвективных сил к диффузионным силам:
, (3.120)
где l - определяющий линейный параметр обтекаемого тела.
Величина, обратная критерию Ре, является параметром диффузионного осаждения и обозначается через D.
Ниже приведены (табл. 3.5) значения коэффициента диффузии частиц, рассчитанные по формуле (3.117) (для воздуха при нормальных условиях), и значения критерия Sc:
Таблица 3.5
- Глава 1. Основные физико-химические свойства
- Глава 2. Характеристики загрязнений окружающей среды и
- 3.13. Процессы рассеивания выбросов в атмосфере.
- Глава 4. Процессы массообмена.
- Глава 5. Химические процессы защиты окружающей среды.
- 5.2.1. Нейтрализация сточных вод.
- Глава 6. Физико-химические процессы защиты окружающей среды.
- Глава 7. Биохимические процессы защиты окружающей среды.
- Глава 8. Тепловые процессы защиты окружающей среды
- 8.3.1. Концентрирование растворов сточных вод.
- Глава 9. Механические процессы защиты литосферы.
- Глава 10. Процессы защиты окружающей среды
- Предисловие
- Раздел 1. Основные физико-химические закономерности защиты окружающей среды.
- Введение
- Глава 1. Основные физико-химические свойства
- 1.1. Агрегатные состояния вещества
- 1.3. Объединенный газовый закон
- 1.4. Основные понятия и законы термодинамики
- 1.5. Смачивание и капиллярные явления
- 1.6. Коллоидные системы
- Классификация дисперсных систем по агрегатному состоянию дисперсной фазы и дисперсионной среды
- 1.7. Поверхностные явления
- 1.8. Растворенное состояние веществ
- 1.9. Кинетика химических процессов
- 1.10. Свойства переноса в многокомпонентных системах
- 1.11. Кинетика гетерогенных процессов
- 1.12. Составы многокомпонентных систем
- Глава 2. Характеристики загрязнений окружающей среды и основные методы ее защиты
- Выбросы вредных веществ в атмосферный воздух от стационарных
- 2.4. Основные свойства аэрозолей
- Дисперсный состав пыли
- Фракции пыли с частицами меньше или больше заданного размера
- Слипаемостъ пыли
- 2.5. Вредные газы и пары
- 2.6. Классификация вод и свойства водных дисперсных систем
- 2.7. Классификация промышленных отходов
- 2.8. Энергетическое загрязнение окружающей среды
- 2.9. Основные процессы инженерной защиты окружающей среды от техногенных загрязнений
- 2.10. Методы очистки пылевоздушных выбросов
- 2.11. Способы очистки газовых выбросов
- 2.13. Методы защиты литосферы
- 2.15. Общие принципы интенсификации технологических процессов
- Глава 3. Гидромеханические процессы очистки газовых выбросов и жидкостных сбросов
- 3.1. Основные закономерности движения и осаждения аэрозолей
- 3.2. Гравитационное осаждение аэрозолей
- Зависимость коэффициента сопротивления от режима движения
- Скорости осаждения и броуновского смещения малых частиц
- В области Reч 0,25 всплывание частиц происходит по зависимости Стокса:
- 3.4. Инерционное осаждение частиц аэрозолей
- 3.5. Центробежное осаждение частиц аэрозолей
- Сопоставляя эти равенства, найдем
- 3.8. Фильтрование сточных вод
- Сопротивление слоя осадка равно
- Уравнение фильтрования при постоянных разности давлений и скорости.
- 3.12. Процессы мокрой газоочистки
- Значения коэффициента диффузии частиц и критерия Шмидта от размера частиц аэрозоля
- 3.13. Процессы рассеивания выбросов в атмосфере
- 3.14. Диффузионные процессы рассеивания в атмосфере
- Профиль скорости ветра описывается формулой
- 3.16. Изменение концентрации примесей в атмосфере
- - Для t 0 - нагретые выбросы
- 3.17. Разбавление примесей в гидросфере
- 3.18. Разбавление сточных вод при спуске в водоемы
- Глава 4. Процессы массообмена
- 4.1. Абсорбция газовых примесей
- 4.1.1. Растворы газов в жидкостях
- Количество выделяющегося при абсорбции тепла составляет
- Общий расход абсорбента равен
- Откуда получим
- 4.2. Адсорбция газовых примесей
- 4.2.1. Теория адсорбции
- 4.2.3. Механизм процесса адсорбции
- 4.2.4. Равновесие при адсорбции
- 4.2.5. Материальный баланс процесса адсорбции
- 4.2.6. Кинетика адсорбции
- Число единиц переноса определяют из выражения
- Величину масштабов можно определить по формуле
- 4.2.7. Десорбция из адсорбентов поглощенных примесей
- Общее уравнение скорости кристаллизации имеет вид
- Глава 5. Химические процессы защиты окружающей среды
- 5.1. Каталитические процессы очистки газовых выбросов
- 5.1.1. Теория катализа
- 5.1.2. Кинетика реакций гетерогенного катализа.
- 5.2.1. Нейтрализация сточных вод
- 5.2.2. Окисление загрязнителей сточных вод
- 5.2.3. Очистка сточных вод восстановлением
- 5.2.4. Химическая очистка сточных вод от ионов тяжелых металлов
- 5.3. Дезодорация и химическая дегазация сточных вод
- Глава 6. Физико-химические процессы защиты окружающей среды
- 6.1. Осаждение частиц аэрозолей в электрическом поле
- 6.2. Термофорез взвешенных частиц аэрозолей
- 6.3. Коагуляция в аэрозолях
- 6.4. Физико-химические процессы очистки сточных вод
- 6.4.2. Процессы флотационной очистки сточных вод
- 6.4.3. Пенная сепарация поверхностно-активных веществ
- Степень извлечения пав пеной равна
- 6.4.4. Процесс ионного обмена в растворах
- Ионообменное равновесие. Функциональную зависимость противоионного состава ионита от противоионного состава внешнего раствора при постоянных температуре и давлении называют изотермой ионного обмена.
- С точная
- Обратного осмоса; 3 – мембрана; 4 – выпускной клапан.
- 6.4.6. Электрохимические процессы очистки сточных вод
- Глава 7. Биохимические процессы защиты окружающей среды
- 7.1. Основные показатели биохимических процессов очистки сточных вод
- 7.2. Аэробный метод биохимической очистки
- 7.3. Механизм биохимического распада органических веществ
- 7.4. Кинетика биохимического окисления
- 7.5. Анаэробные методы биохимической очистки
- Метан может образовываться в результате распада уксусной кислоты
- 7.6. Обработка осадков сточных вод
- Глава 8. Тепловые процессы защиты окружающей среды
- 8.3. Термические процессы обработки сточных вод
- 8.3.1. Концентрирование растворов сточных вод
- 8.3.2. Термоокислительное обезвреживание сточных вод
- 8.4.3. Сушка влажных материалов
- Глава 9. Механические процессы защиты литосферы
- Классификация методов измельчения
- Глава 10. Процессы защиты окружающей среды
- 10.1. Теоретические основы защиты от энергетических воздействий
- Т.К. При 1 коэффициент ρ 0, то методы поглощения используют для уменьшения отраженного потока энергии; при этом источник и приемник энергии обычно находятся с одной стороны от зу.
- Сила fm направлена в сторону, противоположную ускорению.
- 10.4. Защита от электромагнитных полей и излучений
- Радиус дальней зоны составляет