2.9. Пожаро- и взрывоопасность аэрозолей
Измельчение частиц (высокая дисперсность) ведет к увеличению суммарной поверхности и свободной поверхностной энергии системы, т.е. к повышению ее химической активности и к окислению с выделением тепла, которое может при определенных условиях привести к горению. Горение облегчается тем, что твердые частицы аэрозоля и окислитель (кислород воздуха) перемешаны.
Различают воспламенение пыли – т.е. процесс возникновения горения в результате нагрева ее источником воспламенения, и самовоспламенение (самовозгорание), которое, как правило, происходит в результате самоускорения реакции окисления (т.е. превышения скорости тепловыделения экзотермической реакции окисления над скоростью отвода тепла за пределы системы).
Температура самовоспламенения веществ (в нашем случае горючих аэрозолей) очень различна. В связи с этим горючие вещества делят на две группы:
– вещества Iгруппы, для которых температура самовоспламенения выше температуры окружающей среды, т.е. они способны воспламенятся только в результате нагрева.
– вещества IIгруппы, для которых температура самовоспламенения ниже температуры окружающей среды, т.е. они способны воспламенятся без нагрева. Именно такие самовозгорающиеся аэрозоли представляют наибольшую пожарную опасность.
Необходимо отметить, что температура самовоспламенения аэрозолей значительно выше, чем порошков (осевшей пыли), образующихся при оседании аэрозольных частиц, поскольку массовая концентрация этих частиц невелика (намного ниже, чем у порошков) и скорость выделения тепла при реакции окисления может превысить скорость теплоотдачи только при высоких температурах среды.
Самовозгорающиеся вещества (их порошки или пыли) в свою очередь делят на три группы:
1. Вещества, самовозгорающиеся при воздействии на них воздуха (например: бурые и каменные угли, древесный уголь, фрезерный торф, сажа, опилки, сено, листья, сульфиды железа, цинковая и алюминиевая пыль, желтый фосфор, порошок эбонита).
Самовозгоранию ископаемых углей способствует также их измельчение и смачивание; самовозгоранию торфа способствуют биологические процессы.
2. Вещества, самовозгорающиеся при воздействии на них воды (например: калий, натрий, карбид кальция и карбиды щелочных металлов, фосфористые кальций и натрий, негашеная известь и т.д.).
Щелочные металлы (калий, натрий и т.д.) и водородистые калий, натрий и кальций при взаимодействии с водой выделяют водород и значительное количество тепла, в результате чего водород самовоспламеняется и горит вместе с металлом. Примерно также ведет себя ацетилен, образующийся при взаимодействии карбида кальция с небольшим количеством воды.
3. Вещества, самовозгорающиеся при смешивании друг с другом. В эту группу входят различные окислители, например – азотная кислота, разлагаясь, выделяет кислород и может вызвать самовозгорание смолы, льна и других органических веществ.
Химически однородная система (смесь) аэрозолей, поступающая с определенной скоростью из горелки, сгорает устойчивым пламенем. Горение тех же аэрозолей в замкнутом объеме происходит в виде химического взрыва. Такое же горение (т.е. химический взрыв) характерен для некоторых аэрозолей при определенных массовых их концентрациях, называемых концентрационными пределами взрыва. Минимальные и максимальные концентрации аэрозолей, при которых они способны воспламеняться называются нижними и верхними концентрационными пределами. Все горючие аэрозоли, концентрации которых находятся между этими пределами, являются взрывоопасными.
Аэрозоли, концентрации которых находятся ниже нижнего и выше верхнего концентрационных пределов взрыва в замкнутых объемах, являются взрывобезопасными.
Обычно концентрации аэрозольных частиц, соответствующие нижним концентрационным пределам взрыва, настолько значительны, что возможны только в технологическом оборудовании, воздуховодах (газоводах) и пылеулавливателях. В производственных помещениях опасные концентрации аэрозолей могут возникнуть при аварийных ситуациях. Достижение верхних концентрационных пределов возможно в системах аспирации и пневматического транспорта.
Различают следующие классы аэрозолей и порошков по взрыво- и пожароопасности:
I. Наиболее взрывоопасные аэрозоли (пыли) с нижними концентрационными пределами до 15 г/м3 (например: аэрозоли сахара, торфа, эбонита, серы, канифоли).
II. Взрывоопасные аэрозоли (пыли) с нижними концентрационными пределами 16–65 г/м3 (например: аэрозоли алюминия, льна, сланцев, мучная пыль).
III. Наиболее пожароопасные аэрозоли (пыли) с температурой воспламеняемости до 250 оС и нижними концентрационными пределами более 65 г/м3 (например: табачная – 205 оС; элеваторная пыль – 250 оС).
IV. Пожароопасные аэрозоли (пыли) с температурой воспламеняемости выше 250 оС и нижними концентрационными пределами более 65 г/м3 (например: древесные опилки – 275 оС).
В таблице 2.3 приведены данные о нижних концентрационных пределах некоторых пылей.
В общем случае на взрывоопасность аэрозолей оказывают влияние:
1. Дисперсность аэрозолей. Если размеры частиц велики, то вероятность взрыва резко уменьшается (например: для угольной пыли установлена почти линейная зависимость давления на месте взрыва от удельной поверхности пыли – взр. ~ f(Sуд); в связи с этим пыль в шахтах с увеличением расстояния от места ее образования становится потенциально более взрывоопасна).
2. Наличие инертных частиц снижает взрываемость пыли, поскольку часть образующегося тепла расходуется на их нагрев, и температура аэрозоля в результате этого снижается. Кроме того, инертная пыль экранирует тепловые лучи, препятствуя распространению пламени по пылевому облаку.
Таблица 2.3
Нижние пределы пожароопасной концентрации
Пыль | Температура самовоспламеняемости, оС | Нижний концентрационный предел, г/м3 | Класс пожаро- и взрывоопасности |
Сера, серный цвет Нафталин Канифоль Сухое молоко Подсолнечный шрот Пыль мельничная серая Пыль льняной костры Эбонитовая пыль Чайная пыль Мучная пыль Сланцевая пыль Алюминиевый порошок Табачная пыль Угольная пыль Древесные опилки | 575 – 900 875 775 650 700 775 900 600…800 830 – 205 260 275 | 2,3 2,5 5,0 7,6 7,6 10,1 16,7 20,2 32,8 30,2…63,0 58,0 58,0 68…101 114…400 > 65 | I I I I I I II II II II II II III IV IV |
3. Влажность влияет так же, как и инертные добавки, причем влага поглощает в 3–5 раз больше тепла, чем инертная пыль, и кроме того, способствует слиянию мелких частиц, в результате чего уменьшается общая поверхность пыли.
4. Выделение летучих горючих газов повышает взрывоопасность аэрозолей. Пример: пыль каменных углей с содержанием летучих газов менее 10 % – не является взрывчатой. По этой причине пыль антрацита и древесного угля не способна взрываться.
Необходимо заметить, что горючая пыль, вследствие сильно развитой поверхности контакта частиц с кислородом воздуха, способна к самовозгоранию и образованию взрывчатых смесей с воздухом.
Интенсивность взрыва пыли зависит от ее химических и термических свойств, от размеров и свойств частиц, их концентрации в воздухе, от влагосодержания и состава газов, размеров и температуры источника воспламенения и от относительного содержания инертной пыли.
Способностью к воспламенению обладают некоторые пыли органических веществ, образующихся при переработке зерна, красителей, пластмасс, волокон, а также пыли металлов, например марганца, алюминия и цинка.
Минимальные взрывоопасные концентрации взвешенной в воздухе пыли составляют примерно 20–500 г/м3 воздуха, максимальные – около 700–800 г/м3 воздуха. Чем больше содержание кислорода в газовой смеси, тем вероятнее взрыв и больше его сила. При содержании кислорода менее 16 % пылевое облако не взрывается.
- И. П. Аистов
- Защита атмосферы
- От промышленных выбросов
- Учебное пособие
- Введение
- Глава 1. Классификация промышленных выбросов
- 1.1. Классификация выбросов по составу
- 1.2. Летучие промышленные выбросы
- Глава 2. Характеристики и свойства аэрозолей
- 2.1. Морфология частиц (коэффициент формы)
- Ориентировочные значения коэффициента формы частицы
- 2.2. Дисперсность аэрозолей
- Пример фракционного состава пыли
- 2.3. Плотность частиц
- 2.4. Удельная поверхность частиц
- 2.5. Коагуляция аэрозолей
- 2.6. Адгезия и аутогезия
- 2.7. Электризация аэрозолей
- 2.8. Смачиваемость твердых частиц аэрозолей
- 2.9. Пожаро- и взрывоопасность аэрозолей
- 2.10. Вредное действие пыли на человека
- 2.11. Вредное действие пыли на оборудование
- Глава 3. Параметры процесса очистки газа в газоочистительных аппаратах
- 3.1. Степень очистки газоочистительного аппарата
- 3.2. Фракционная степень очистки газоочистительного аппарата
- 3.3. Гидравлическое сопротивление пылеуловителей
- Глава 4. Физические основы очистки газов
- 4.3. Достоинства и недостатки «мокрых» методов очистки газов
- 4.4. Основные механизмы осаждения частиц
- 4.5. Закон Стокса
- 4.6. Гравитационное осаждение частиц. Скорость витания частиц
- 4.7. Центробежное осаждение частиц
- 4.8. Инерционное осаждение частиц
- А) сферическое или цилиндрическое препятствие б) плоское препятствие
- 4.9. Осаждение частиц при зацеплении
- 4.10. Поправка Кенингема-Милликена. Броуновское движение частиц
- 4.11. Осаждение частиц под действием электрического поля
- 4.12. Осаждение пылевых частиц на поверхности жидкости
- 4.13. Улавливание частиц при барботаже
- 4.14. Захват частиц каплями
- Глава 5. Сухие механические пылеуловители
- 5.1. Пылеосадительная камера
- 5.2. Инерционные пылеуловители
- 5.3. Жалюзийные пылеуловители
- 5.4. Циклоны
- 5.4.1. Основные виды и конструкции циклонов
- Циклоны типа цн
- Групповой циклон из 6-ти элементов: 1 – коллектор грязного газа; 2 – камера чистого газа; 3 – бункер; 4 – люк; 5 – циклон левый; 6 – циклон правый Групповые циклоны
- Батарейные циклоны
- 5.4.2. Принцип действия и устройство циклонов
- 5.4.3. Теоретические основы расчета циклонов
- Глава 6. Мокрые пылеуловители
- 6.1. Абсорбция
- 6.2. Полые газопромыватели
- 6.3. Центробежный скруббер типа цвп
- 6.4. Форсуночный скруббер
- 6.5. Барботажно-пенные пылеуловители
- 6.6. Струйный пылеуловитель типа пвмс
- 6.7. Скруббер Вентури
- 6.8. Противопоточные насадочные башни
- 6.9. Определение эффективности очистки газов в мокрых пылеуловителях
- 6.9.1. Фракционный метод
- 6.9.2. Энергетический метод расчета эффективности улавливания пыли мокрыми пылеуловителями
- Глава 7. Основные методы и аппараты очистки газовых выбросов от химических соединений и примесей
- 7.1. Адсорбция
- 7.2. Термическая нейтрализация
- 7.3. Биохимические методы
- Библиографический список
- Параметры β и χ для некоторых аэрозолей
- Содержание
- Глава 5. Сухие механические пылеуловители 50
- Глава 6. Мокрые пылеуловители 63
- Глава 7. Основные методы и аппараты очистки
- 7.1. Адсорбция 76