7.3. Биохимические методы
Биохимические методы основаны на способности микроорганизмов разрушать и преобразовывать различные соединения под действием ферментов, вырабатываемых микроорганизмами под влиянием отдельных соединений или группы веществ, присутствующих в очищаемых газах.
Биохимические методы газоочистки более всего применимы для очистки отходящих газов постоянного состава, так как при частном изменении состава газа микроорганизмы не успевают адаптироваться к новым веществам и вырабатывают недостаточное количество ферментов для их разложения, в результате чего биологическая система будет обладать слабой разрушающей способностью по отношению к вредным компонентам газов. Высокий эффект газоочистки достигается при условии, что скорость биохимического окисления улавливаемых веществ больше скорости их поступления из газовой среды: vбиох. окисл. > vг.
Различают две группы аппаратов биохимической очистки газов: биофильтры и биоскрубберы.
Биоскрубберами называют абсорбционные аппараты (абсорберы, скрубберы), в которых орошающей жидкостью (абсорбентом) служит водяная суспензия активного ила. Так как биохимические реакции протекают сравнительно с небольшой скоростью, то для обеспечения эффективности газоочистки используют промежуточную емкость, которая может быть выполнена в виде отдельного реактора или встроена в основание адсорбера.
В биофильтрах очищенный газ пропускают через слой фильтра-насадки, орошаемый водой для создания необходимой влажности, достаточной для поддержания жизнедеятельности микроорганизмов. Насадкой служат природные (почва, торф, компост и др.) или искусственные материалы, при использовании которых в них предварительно выращивают биологически-активную пленку орошением водой или суспензией активного ила.
Эффективная работа биофильтров обеспечивается за счет равномерного распределения очищаемого газа по всей фильтрующей поверхности, равномерной влажности (20…50 %) и плотности фильтрующего слоя, поддержания оптимальных температур (25…35 °C) и значения рН = 6,5 – 8,5.
Способность активного ила к расщеплению уловленных веществ устанавливается по соотношению так называемых полной биохимической потребности в кислороде (БПКп) до начала процессов нитрификации и химической потребности в кислороде (ХПК), которая характеризует окисление вещества до диоксида углерода и воды. Принимается, что при , вещества поддаются биохимическому окислению.
- И. П. Аистов
- Защита атмосферы
- От промышленных выбросов
- Учебное пособие
- Введение
- Глава 1. Классификация промышленных выбросов
- 1.1. Классификация выбросов по составу
- 1.2. Летучие промышленные выбросы
- Глава 2. Характеристики и свойства аэрозолей
- 2.1. Морфология частиц (коэффициент формы)
- Ориентировочные значения коэффициента формы частицы
- 2.2. Дисперсность аэрозолей
- Пример фракционного состава пыли
- 2.3. Плотность частиц
- 2.4. Удельная поверхность частиц
- 2.5. Коагуляция аэрозолей
- 2.6. Адгезия и аутогезия
- 2.7. Электризация аэрозолей
- 2.8. Смачиваемость твердых частиц аэрозолей
- 2.9. Пожаро- и взрывоопасность аэрозолей
- 2.10. Вредное действие пыли на человека
- 2.11. Вредное действие пыли на оборудование
- Глава 3. Параметры процесса очистки газа в газоочистительных аппаратах
- 3.1. Степень очистки газоочистительного аппарата
- 3.2. Фракционная степень очистки газоочистительного аппарата
- 3.3. Гидравлическое сопротивление пылеуловителей
- Глава 4. Физические основы очистки газов
- 4.3. Достоинства и недостатки «мокрых» методов очистки газов
- 4.4. Основные механизмы осаждения частиц
- 4.5. Закон Стокса
- 4.6. Гравитационное осаждение частиц. Скорость витания частиц
- 4.7. Центробежное осаждение частиц
- 4.8. Инерционное осаждение частиц
- А) сферическое или цилиндрическое препятствие б) плоское препятствие
- 4.9. Осаждение частиц при зацеплении
- 4.10. Поправка Кенингема-Милликена. Броуновское движение частиц
- 4.11. Осаждение частиц под действием электрического поля
- 4.12. Осаждение пылевых частиц на поверхности жидкости
- 4.13. Улавливание частиц при барботаже
- 4.14. Захват частиц каплями
- Глава 5. Сухие механические пылеуловители
- 5.1. Пылеосадительная камера
- 5.2. Инерционные пылеуловители
- 5.3. Жалюзийные пылеуловители
- 5.4. Циклоны
- 5.4.1. Основные виды и конструкции циклонов
- Циклоны типа цн
- Групповой циклон из 6-ти элементов: 1 – коллектор грязного газа; 2 – камера чистого газа; 3 – бункер; 4 – люк; 5 – циклон левый; 6 – циклон правый Групповые циклоны
- Батарейные циклоны
- 5.4.2. Принцип действия и устройство циклонов
- 5.4.3. Теоретические основы расчета циклонов
- Глава 6. Мокрые пылеуловители
- 6.1. Абсорбция
- 6.2. Полые газопромыватели
- 6.3. Центробежный скруббер типа цвп
- 6.4. Форсуночный скруббер
- 6.5. Барботажно-пенные пылеуловители
- 6.6. Струйный пылеуловитель типа пвмс
- 6.7. Скруббер Вентури
- 6.8. Противопоточные насадочные башни
- 6.9. Определение эффективности очистки газов в мокрых пылеуловителях
- 6.9.1. Фракционный метод
- 6.9.2. Энергетический метод расчета эффективности улавливания пыли мокрыми пылеуловителями
- Глава 7. Основные методы и аппараты очистки газовых выбросов от химических соединений и примесей
- 7.1. Адсорбция
- 7.2. Термическая нейтрализация
- 7.3. Биохимические методы
- Библиографический список
- Параметры β и χ для некоторых аэрозолей
- Содержание
- Глава 5. Сухие механические пылеуловители 50
- Глава 6. Мокрые пылеуловители 63
- Глава 7. Основные методы и аппараты очистки
- 7.1. Адсорбция 76