21.2. Нетрадиционные возобновляемые источники энергии
Понятие устойчивого развития включает в себя как обязательный компонент постепенный переход от энергетики, основанной на сжигании органического топлива (нефть, уголь, газ и др.), к нетрадиционной (альтернативной) энергетике, использующей возобновляемые экологически чистые источники энергии солнце, ветер, энергию биомассы, подземное тепло и др. (рис. 21.5).
Рис. 21.5. Классификация возобновляемых источников энергии (Энергоактивные здания, 1988, с изм.)
В послании международной экологической организации Гринпис правительствам всех стран отмечается, что «правительства должны признать, что углеводородное топливо основная причина изменения климата и что единственной стабильной системой энергоснабжения, способной отвечать нашим энергетическим потребностям, может быть система, основанная на возобновляемых источниках энергии».
Основные преимущества возобновляемых источников энергии хорошо известны: практическая неисчерпаемость запасов (рис. 21.5) и относительная экологическая безвредность, в связи с отсутствием побочных эффектов, загрязняющих природную среду. Сдерживает их развитие недостаточный на сегодняшний день технический уровень индустриальных методов использования.
В жилищно-строительной сфере, как и во всех других видах человеческой деятельности, использование нетрадиционных возобновляемых источников энергии получило широкое развитие.
Энергия Солнца. В современной мировой практике энергоснабжения излучение Солнца возможно, главный нетрадиционный источник энергии. Появилась новая отрасль энергетики гелиоэнергетика, созданы специальные энергетические установки гелиосистемы.
«Ливень» солнечной энергии неисчерпаем. Лишь незначительная часть излучения Солнца (0,02%) попадает в биосферу Земли, но и этого количества энергии достаточно, чтобы в тысячи раз перекрыть общую мощность всех электростанций мира.
К недостаткам солнечной энергии относят дискретность (прерывистость) ее поступления на поверхность Земли (по часам суток, времени года, географическим поясам) и зависимость от метеорологических условий. Например, в России специалисты рекомендуют размещать гелиополигоны южнее 55 с. ш. В связи с этим многие зарубежные ученые работают над проблемой выноса гелиосистем на околоземную орбиту. Предполагается строительство в Европе 40 спутниковых солнечных электростанций, способных обеспечить около 20% потребности в электроэнергии. Однако не исключено, что солнечные электростанции могут причинить ущерб окружающей среде в процессе передачи энергии на Землю (А. И. Мелуа и др., 1988).
Существует два основных направления использования солнечной энергии: выработка электрической энергии и получение тепловой энергии (теплоснабжение). Применение солнечных электрогенераторов находится все еще в начальной стадии, зато использование солнечного теплоснабжения для обогрева жилых зданий занимает в мировой практике уже значительное место.
Так, в США в 1977 г. насчитывалось около 1000 солнечных домов, в 90-е гг. число их превысило 15 тыс. Солнечные установки для подогрева воды имеют 90% домов на Кипре и 70% в Израиле. Только за последние 15 лет в Японии построены сотни тысяч зданий с солнечным подогревом, что позволило резко уменьшить выбросы в атмосферу диоксида углерода и других парниковых газов.
Солнечная энергетика в России развита совершенно недостаточно, хотя половина ее территории находится в благоприятных для использования солнечной энергии условиях в год ее поступает не менее 100 кВт ч/м2, а в таких районах, как Дагестан, Бурятия, Приморье, Астраханская область и др. до 200 кВт ч/м2 (Стребков, 1993).
Солнечная энергия очень удобна для энергоснабжения зданий. Как показали экспериментальные исследования, только за счет энергии солнечных лучей, падающих на ограждающие конструкции зданий, можно полностью решить энергетические проблемы, связанные с их обогревом, горячим водоснабжением и др.
Существует три вида гелиосистем, служащих для удовлетворения тепловых нужд здания: пассивные, активные и смешанные (Швецов, 1994).
В пассивных гелиосистемах само здание служит приемником и преобразователем солнечной энергии, а распределение тепла осуществляется за счет конвенции.
Основным элементом более дорогостоящей активной гелиосистемы является коллектор приемник солнечной энергии, где солнечный свет преобразуется в тепло. Гелиоколлектор представляет собой теплоизолированный ящик: видимый свет от солнца проходит сквозь прозрачное покрытие (стекло или пленку), попадает на зачерненную панель и нагревает ее. При специальной конструкции коллектора внутри его достигается очень высокая температура, позволяющая успешно осуществлять горячее водоснабжение.
Оценивая эффективность применения солнечного теплоснабжения в нашей стране, Н. Пинигин и А. Александров (1990) показали, что использование солнечных установок в режиме круглогодичного горячего водоснабжения зданий экономически целесообразно практически для всей южной части Российской Федерации.
В последние годы созданы установки с сезонным аккумулированием тепла, что позволяет даже в условиях Сибири сохранить до 30% топливных ресурсов и использовать их для обогрева небольших домов в зимний период. Необходимы дальнейшие поиски использования солнечной энергии не только в южных, но и в северных районах России, особенно учитывая, что в Норвегии и Финляндии такой опыт уже имеется.
Использование солнечной энергии в жилищно-строительной сфере не ограничивается только теплоснабжением жилых зданий. Так, АО «ПИ-2» разработало серию проектов гелиополигонов (стационарных и мобильных, сезонных и круглогодичного действия), в которых впервые в мире для термовлажностной обработки сборных железобетонных конструкций и изделий была использована солнечная энергия без промежуточных превращений (Великолепов, 1995) (рис. 21.6). После укладки гелиопокрытия (СВИТАП) железобетонное изделие превращается в аккумулятор тепла, после чего начинает действовать другой источник тепла экзотермия цемента.
Рис. 21.6. Общий вид и технологическая схема гелиополигона круглогодичного действия: 1 гелиокамеры; 2 форма на колесах; 3 СВИТАП; 4 запирающий щит; 5 инфракрасные излучатели; 6 механизм передвижения форм; 7 производственный корпус с БСЦ; 8 бетоновозная эстакада; 9 склад арматурных каркасов; 10 бетоноукладчик; 11 склад готовой продукции с зоной дозревания; 12 козловой кран
Строительство таких гелиополигонов позволяет: сократить объемы строительно-монтажных работ, повысить долговечность и качество изделия, снизить его стоимость, отказаться от котельной, теплотрасс, пропарочных камер, уменьшить нагрузку на окружающую среду и, главное, экономить условное топливо. По мнению авторов проекта, необходимо пересмотреть способы производства сборного железобетона и создать условия для широкого внедрения энергосберегающих технологий, использующих солнечную энергию.
В заключение приведем высказывание лауреата Нобелевской премии Жореса Алферова (2001) по поводу использования солнечной энергии: «Солнце это термоядерный реактор, который работает миллионы лет надежно и безопасно. И задача преобразования солнечной энергии в электрическую будет решена. Может быть, даже в нашем ХХI веке. Академик Иоффе мечтал о солнечной энергетике и ее широком применении, когда КПД солнечных преобразований равнялся 0,1%. Сегодня КПД солнечных преобразований на гетероструктурах достиг 35%. Да, это по-прежнему дороже, чем атомная энергетика. Но дороже не на порядок, а лишь в несколько раз. И хочется верить, что лет через пятнадцать двадцать солнечная энергетика будет сравнима или даже обойдет другие виды».
Завораживающей сознание выглядит идея, предложенная японскими специалистами, о строительстве единой для всей планеты гигантской солнечной электростанции где-нибудь в Сахаре или пустынях Австралии. Для этой станции потребовалась бы площадь, эквивалентная квадрату со стороной 800 км. Но уже сейчас суммарная площадь солнечных отражателей, используемых в мировой практике, превышает 6 млрд м2 (США 1,8 млрд м2, Япония 1,3 млрд м2 и т. д.).
Энергия ветра. Направление энергетики, связанное с ветровой энергией, называют ветроэнергетикой, а здания, в которых энергия ветра преобразуется в электрическую, тепловую и другие виды энергии, ветроэнергоактивными.
Ветроэнергетика становится рентабельной при средних скоростях ветра от 3 до 10 м/с при повторяемости около 6090% и, следовательно, может использоваться лишь в районах с постоянным ветром (Крайний Север, побережье Охотского моря, Камчатка, Курилы, Прикаспийская низменность и др.).
В ветроэнергоактивном здании энергия ветра преобразуется с помощью ветрового колеса, размещенного в здании. Основным рабочим органом является ротор, который вращает генератор.
По А. Н. Тетиору (1991), важной экологической проблемой является защита здания и жителей от механических колебаний, генерируемых ветроустановкой. Применение различных способов виброизоляции, включая размещение ветроэнергетических установок вне жилых зданий, приводит к удорожанию их строительства. Значительным недостатком ветроэлектростанции является также генерация ими инфразвукового шума.
И, тем не менее, ветроэнергетика имеет большое будущее. За последние 20 лет она прошла путь от небольших агрегатов до современной многомиллиардной отрасли, обеспечивающей большое количество энергосистем. В 2001 г. ветротурбины, мощность которых составляла 14 000 МВт, генерировали «чистую» электроэнергию в более чем 30 странах мира. Только в США работает 9000 ветровых электроустановок, в Дании 1500. По данным Европейской ассоциации ветровой энергии, к 2020 г. ветровые электростанции обеспечат 10% мировой потребности в электроэнергии.
Геотермальная энергия. На территории СНГ запасы еще одного нетрадиционного источника энергии геотермального тепла, оцениваются в десятки миллионов тонн условного топлива. Идея использования тепла Земли как альтернативного энергоресурса не нова. Еще в 20-е гг. ХХ в. К. Э. Циолковский и В. А. Обручев считали возможным использование геотермального тепла. К началу ХХI в. мощность энергии геотермальных систем в мире превысила 16 млн кВт ч, что достаточно для обогрева многих тысяч квартир. Исландия полностью отказалась от использования органического топлива, и широко использует геотермальные воды.
Наиболее экономически выгодный вариант использования геотермального тепла строительство ГЭС с использованием водяного пара (температурой 200400 С). К сожалению, месторождения термального пара в России, да и в мире, редки, поэтому основное применение находят геотермальные (теплоэнергетичекие) воды с температурой до 200 С, выходящие на поверхность земли в виде источников. Достаточно упомянуть в связи с этим Паужетскую гидротермальную станцию, построенную в 1967 г. на Камчатке.
Перспективным направлением в энергосбережении специалисты считают извлечение тепловой энергии из водонасыщенных пластов, залегающих на глубинах 23 км и имеющих температуру 150200 С. На выбранной площадке бурятся вертикальные и наклонные нагнетательные скважины, по которым закачивается теплоноситель, который прогревается горячими породами, а затем откачивается. Подобная теплоэнергетическая система называется циркуляционной и ее применение вполне целесообразно во многих районах СНГ (Северный Кавказ, Крым, Армения, Закарпатье и др.). Первая в России термоциркуляционная система действовала в г. Грозном, где вода после использования в теплицах нагнеталась на глубину 1 км, там она вновь нагревалась.
Энергия биомассы. Биомасса это выраженное в единицах массы количество живого вещества организмов, приходящееся на единицу площади или объема. В процессе переработки она преобразуется в органические отходы и биогаз.
В настоящее время биомасса широко используется в качестве топлива, что является результатом постоянных усилий ученых и специалистов по созданию экологически чистой энергии и предотвращению выбросов загрязняющих веществ в атмосферу.
В энергетических целях биомассу либо сжигают, используя теплоту сгорания (в этом случае продукты пиролиза могут загрязнять атмосферу), либо перерабатывают путем анаэробного сбраживания с целью получения биогаза (рис. 21.7). Биогаз, состоящий на 6070% из метана и на 2040% из углекислого газа, получают в специальных установках, основной частью которых является реактор (метантенк), т. е. бродильная камера, в которую загружают биомассу.
Рис. 21.7. Принципиальная схема переработки ТБО методом анаэробного компостирования для получения биогаза: 1 приемный бункер; 2 мостовой грейферный кран; 3 дробилка; 4 магнитный сепаратор; 5 насос-смеситель; 6 метантенк; 7 шнековый пресс; 8 рыхлитель; 9 емкость для сбора отжима; 10 цилиндрический грохот; 11 упаковочная машина; 12 крупный отсев; 13 склад удобрений; 14 газголдер; 15 компрессор; 16 уравнительная касера; I направление движения отходов; II направление движения биогаза
Материалом для переработки на биогазовых установках служат твердые бытовые отходы, навоз, отходы деревообработки (кора, опилки, стружки), осадки биологических очистных устройств и др.
С экологической точки зрения укажем на некоторые отличительные особенности использования этого энергетического направления:
1) биотехнологическая трансформация биомассы в энергию считается абсолютно безвредной;
2) в отличие от традиционных источников энергии данный метод не загрязняет окружающую среду;
3) вырабатывается не только энергия, но и одновременно природная среда очищается (освобождается) от продуктов жизнедеятельности и других отходов.
После очищения от углекислого газа и сероводорода биогаз сжигают и используют в стандартных водонагревателях, газовых плитах, горелках и других приборах.
В строительной сфере биогаз, как показывает мировой опыт, широко используется как источник экологически чистой энергии при производстве многих строительных материалов: гипса, стекла, керамзита и др. Доказано также, что при сухом способе производства цемента экологически и экономически выгоднее во вращающихся обжиговых печах использовать не традиционные источники энергии, а биогаз.
К нетрадиционным возобновляемым источникам энергии относят также энергию приливов, энергию ветровых волн, тепловые насосы, энергию температурных колебаний различных слоев морской воды и т. д.
Перспективным методом использования нетрадиционных источников энергии считается объединение ряда зданий в единую энергосистему в виде гелио- и ветрогелиокомплексов, а также ветроэнергоактивных комплексов, дополненных тепловыми насосами для трех сред (Селиванов, 1993). Эксплуатация подобных жилищно-энергетических комплексов позволит не только экономить невозобновляемые источники энергии, но и исключить или свести к минимуму вредное воздействие энергетики на окружающую среду.
- Isbn:539000289x
- Isbn-13(ean):9785390002896
- Раздел I. Общая экология
- 1. Предмет и задачи экологии
- 2. Краткий обзор истории развития экологии
- 3. Значение экологического образования
- Контрольные вопросы
- Глава 1. Взаимодействие организма и среды
- 1.1. Главные уровни организации жизни и экология
- 1.2. Организм как живая целостная система
- 1.3. Общая характеристика биоты Земли
- Высшие таксоны ситематики империи клеточных организмов
- 1.4. О среде обитания и экологических факторах
- 1.5. Об адаптациях организмов к среде обитания
- 1.6. Лимитирующие экологические факторы
- Контрольные вопросы
- Глава 2. Экологические факторы и ресурсы среды
- 2.1. Физические и химические экологические факторы в жизни организмов Влияние температуры на организмы
- Свет и его роль в жизни организмов
- Вода в жизни организмов
- Совместное действие температуры и влажности
- Водная среда
- Атмосферные газы как экологический фактор
- Физические факторы воздушной среды
- Химические факторы воздушной среды
- Биогенные вещества как экологические факторы
- Биогенные макроэлементы
- Биогенные микроэлементы
- 2.2. Эдафические экологические факторы в жизни растений и почвенной биоты
- Состав и структура почв
- Строение почв в вертикальном разрезе
- Важнейшие экологические факторы почв
- Экологические индикаторы
- 2.3. Естественные геофизические поля как экологические факторы
- 2.4. Ресурсы живых существ как экологические факторы
- Классификация ресурсов
- Экологическое значение незаменимых ресурсов
- Экологическое значение пищевых ресурсов
- Ограждение пищевых ресурсов
- Пространство как ресурс
- Контрольные вопросы
- Глава 3. Популяционная экология
- 3.1. Количественные показатели популяций Статические показатели популяций
- Динамические показатели популяций
- 3.2. Продолжительность жизни вида
- Статическая демографическая таблица женского населения Канады на 1980 г. (по Krebs, 1985)
- 3.3. Динамика численности популяций
- 3.4. Регуляция плотности популяции
- 3.5. Экологические стратегии выживания
- Контрольные вопросы
- Глава 4. Экология биотических сообществ
- 4.1. Видовая структура сообществ и способы ее оценки
- 4.2. Пространственная структура сообществ
- 4.3. Экологическая ниша и взаимоотношения организмов в сообществе
- Классификация биотических взаимодействий популяций двух видов (по ю. Одуму, 1986)
- 1 Жираф; 2 антилопа геренук; 3 антилопа дик-дик; 4 носорог; 5 слон; 6 зебра; 7 гну; 8 газель Гранта; 9 антилопа бубал
- Контрольные вопросы
- Глава 5. Экологические системы
- 5.1. Концепция, масштабы и трофическая структура экосистемы
- 5.2. Продуцирование и разложение в природе
- 5.3. Гомеостаз экосистемы
- 5.4. Энергетические потоки в экосистеме Энергетические потоки
- Принцип биологического накопления
- 5.5. Уровни биологической продуктивности экосистем. Экологические пирамиды
- Уровни производства органического вещества
- Экологические пирамиды
- 5.6. Динамика экосистемы (цикличность, сукцессия, климакс)
- Цикличность
- Экологическая сукцессия
- Сукцессионные процессы и климакс
- 5.7. Системный подход и моделирование в экологии
- Контрольные вопросы
- Раздел II. Учение о биосфере
- Глава 6. Биосфера как глобальная экосистема Земли
- 6.1. Место биосферы среди оболочек Земли
- Соотношение горных пород земной коры
- Распределение вод на Земле
- Состав атмосферы
- 6.2. Состав биосферы как глобальной экосистемы
- 1 Озоновый слой; 2 граница снегов; 3 почва; 4 животные, обитающие в пещерах; 5 бактерии в нефтяных водах (высота и глубина даны в метрах)
- Скорость формирования гумусового горизонта почв Русской равнины (по а. Н. Геннадиеву и др., 1987)
- Глобальные функции почв (педосферы) (Добровольский, Никитин, 1986)
- 6.3. Круговорот веществ в природе
- 6.4. Биогеохимические циклы наиболее важных для жизни организмов биогенных веществ
- Контрольные вопросы
- Глава 7. Природные экосистемы Земли как хорологические единицы биосферы
- 7.1. Ландшафты и экосистемы
- Первичная биологическая продуктивность экосистем земного шара (по р. X. Уиттекеру, 1980)
- I. Наземные биомы
- II. Типы пресноводных экосистем
- III. Типы морских экосистем
- 7.2. Наземные биомы (экосистемы)
- 7.3. Пресноводные экосистемы Особенности и факторы пресноводных местообитаний
- Характеристика пресноводных экосистем
- 7.4. Морские экосистемы Особенности и факторы морской среды
- Характеристика морских экосистем
- 1 Stomias; 2 Argyropelecus; 3 Gonostoma; 4 Malacosteus; 5 Idiacanthus; 6 Chauliodus
- 7.5. Функциональная целостность биосферы
- Контрольные вопросы
- Глава 8. Эволюция биосферы и факторы ее устойчивости
- 8.1. Основы учения в. И. Вернадского о биосфере
- Эволюция биосферы и ее основных составляющих (по ф. Рамаду, 1981)
- 8.2. Эволюция биосферы и ее биоразнообразие
- 8.3. Биотическая регуляция окружающей среды
- 8.4. Ноосфера как новая стадия эволюции биосферы
- Контрольные вопросы
- Раздел III. Человек в биосфере
- Глава 9. Биосоциальная природа человека и экология
- 9.1. Человек как биологический вид Эволюционные особенности вида
- Наследственность человека
- Искусственная среда и эволюция человека
- 9.2. Человечество как популяционная система
- Рост численности населения
- Темпы роста населения Земли в 19502000 гг. (Лестер р. Браун, 1992)
- 9.3. Природные ресурсы Земли как лимитирующий фактор выживания человечества Общие представления
- Классификация природных ресурсов
- Контрольные вопросы
- Глава 10. Антропогенные экосистемы
- 10.1. О фундаментальных типах экосистем
- Сравнение природной и упрощенной антропогенной экосистем (по Миллеру, 1993)
- 10.2. Сельскохозяйственные экосистемы (агроэкосистемы)
- 10.3. Индустриально-городские экосистемы о процессах урбанизации
- Урбанистические системы
- Контрольные вопросы
- Глава 11. Здоровье человека и окружающая среда
- 11.1. Понятия «здоровье» и «окружающая среда»
- 11.2. Влияние природно-экологических факторов на здоровье человека
- 11.3. Влияние социально-экологических факторов на здоровье человека
- 11.4. Гигиена и здоровье человека
- 11.5. Валеология наука о здоровье
- Контрольные вопросы
- Раздел IV. Антропогенные воздействия на биосферу
- Глава 12. Основные виды антропогенных воздействий на биосферу
- 12.1. Общие положения
- 12.2. Загрязнение главнейший вид негативного воздействия на биосферу
- Контрольные вопросы
- Глава 13. Антропогенные воздействия на атмосферу
- 13.1. Загрязнение атмосферного воздуха
- Выброс в атмосферу главных загрязнителей (поллютантов) в мире и в России
- 13.2. Основные источники загрязнения атмосферы
- 13.3. Экологические последствия загрязнения атмосферы
- Влияние выхлопных газов автомобиля на здоровье человека (по х. Ф. Френчу, 1992)
- Токсичность загрязнения воздуха для растений (Бондаренко, 1985)
- 13.4. Экологические последствия глобального загрязнения атмосферы
- Возможное потепление климата («парниковый эффект»)
- Нарушение озонового слоя
- Кислотные дожди
- Закисление озер в мире (по данным «XX век последние 10 лет», 1992)
- Контрольные вопросы
- Глава 14. Антропогенные воздействия на гидросферу
- 14.1. Загрязнение гидросферы
- Главные загрязнители воды
- Приоритетные загрязнители водных экосистем по отраслям промышленности
- 14.2. Экологические последствия загрязнения гидросферы
- 14.3. Истощение подземных и поверхностных вод
- Контрольные вопросы
- Глава 15. Антропогенные воздействия на литосферу
- 15.1. Деградация почв (земель)
- Эрозия почв (земель)
- Загрязнение почв
- Вторичное засоление и заболачивание почв
- Опустынивание
- Отчуждение земель
- 15.2. Воздействия на горные породы и их массивы Горные породы
- Массивы горных пород
- 15.3. Воздействия на недра
- Контрольные вопросы
- Глава 16. Антропогенные воздействия на биотические сообщества
- 16.1. Значение леса в природе и жизни человека
- 16.2. Антропогенные воздействия на леса и другие растительные сообщества
- 16.3. Экологические последствия воздействия человека на растительный мир
- Относительная чувствительность растений к воздействию загрязнения воздуха
- Исчезновение видов высших растений под воздействием человека за последние 200 лет
- 16.4. Значение животного мира в биосфере
- 16.5. Воздействие человека на животных и причины их вымирания
- Контрольные вопросы
- Глава 17. Особые виды воздействия на биосферу
- 17.1. Загрязнение среды отходами производства и потребления
- 17.2. Шумовое воздействие
- 17.3. Биологическое загрязнение
- 17.4. Воздействие электромагнитных полей и излучений
- 17.5. Загрязнение от ракетно-космической деятельности
- Контрольные вопросы
- Глава 18. Экстремальные воздействия на биосферу
- 18.1. Воздействие оружия массового уничтожения
- 18.2. Воздействие техногенных экологических катастроф
- 18.3. Стихийные бедствия
- Стихийные бедствия эндогенного характера
- Стихийные бедствия экзогенного характера
- Контрольные вопросы
- Раздел V. Охрана окружающей среды. Экологическая защита
- Глава 19. Взаимодействие природы и общества на современном этапе
- 19.1. Основные формы взаимодействия природы и общества
- 19.2. Важнейшие природоохранные принципы и объекты охраны окружающей среды
- 19.3. Экологический кризис и пути выхода из него
- Контрольные вопросы
- Глава 20. Инженерная экологическая защита
- 20.1. Принципиальные направления инженерной экологической защиты
- Малоотходная и безотходная технологии и их роль в защите среды обитания
- Биотехнология в охране окружающей среды
- 20.2. Нормирование качества окружающей среды
- Предельно допустимые концентрации вредных веществ в атмосферном воздухе населенных пунктов, мг/м3
- Предельно допустимые концентрации вредных веществ в питьевых водах, мг/л
- 20.3. Защита атмосферы
- 20.4. Защита гидросферы Поверхностная гидросфера
- Подземная гидросфера
- 1 Водоносные пески; 2 депрессионная воронка; 3 насосная; 4 здание для очистки воды; 5 инфильтрационные бассейны; 6 водозаборные скважины
- 20.5. Защита литосферы Защита почв (земель)
- Охрана и рациональное использование недр
- Рекультивация нарушенных территорий
- Основные направления рекультивации и виды последующего использования рекультивированных земель
- Защита массивов горных пород
- 20.6. Защита биотических сообществ Защита растительного мира
- Охрана животного мира
- Красная книга
- Особо охраняемые природные территории
- 20.7. Защита окружающей среды от особых видов воздействий Защита от отходов производства и потребления
- Защита от шумового воздействия
- Защита от электромагнитных полей и излучений
- Защита от негативного биологического воздействия
- Контрольные вопросы
- Глава 21. Энерго- и ресурсосбережение
- 21.1. Экологичное энергопотребление
- Основные направления экологичного энергопотребления
- Характеристика основных утеплителей по данным зарубежных источников
- Энергосберегающие заглубленные здания
- Концепция энергосберегающего экодома
- 21.2. Нетрадиционные возобновляемые источники энергии
- 21.3. Ресурсосбережение в строительстве Использование техногенного сырья мощный экологический ресурс
- Экологическая безопасность техногенного сырья
- Контрольные вопросы
- Раздел VI. Охрана окружающей среды. Правовые и экономические аспекты
- Глава 22. Административно-правовые основы охраны окружающей среды
- 22.1. Экологическое законодательство Российской Федерации
- 22.2. Государственные органы управления в области охраны окружающей среды
- 22.3. Экологическая стандартизация, сертификация и паспортизация
- 22.4. Экологическая экспертиза и овос
- 22.5. Экологический риск и зоны повышенного экологического риска
- Зоны чрезвычайной экологической ситуации и экологического бедствия в России
- 22.6. Экологический мониторинг
- Система наземного мониторинга окружающей среды (по и. П. Герасимову)
- 22.7. Экологический контроль
- Контрольные вопросы
- Глава 23. Экологические права и обязанности граждан
- 23.1. Экологические права граждан. Общественные экологические движения
- 23.2. Экологические обязанности граждан
- 23.3. Юридическая ответственность за экологические правонарушения
- Контрольные вопросы
- Глава 24. Экономический механизм охраны окружающей среды
- 24.1. Методы экономического регулирования
- 24.2. Эколого-экономический учет природных ресурсов и загрязнителей
- 24.3. Лицензии, договора и лимиты на природопользование
- 24.4. Новые механизмы финансирования природоохранных мероприятий
- 24.5. Экономическое стимулирование в области охраны окружающей среды
- 24.6. Понятие о концепции устойчивого эколого-экономического развития
- Контрольные вопросы
- Глава 25. Экологизация общественного сознания
- 25.1. Антропоцентризм и экоцентризм. Формирование нового экологического сознания
- 25.2. Экологическое образование, воспитание и культура
- Контрольные вопросы
- Глава 26. Международное экологическое сотрудничество
- 26.1. Роль международных экологических отношений
- 26.2. Национальные и международные объекты охраны окружающей среды
- 26.3. Основные принципы международного экологического сотрудничества
- 26.4. Участие России в международном экологическом сотрудничестве
- Контрольные вопросы