40. Влияние аэс на окружающую среду.
Иллюзия о безопасности атомной энергетики была разрушена после
нескольких больших аварий в Великобритании, США и СССР, апофеозом
которых стала катастрофа на чернобыльской АЭС. В эпицентре аварии уровень загрязнения был настолько высок, что население ряда районов пришлось эвакуировать, а почвы, поверхностные воды, растительный покров оказались радиоактивно зараженными на многие десятилетия. Всё это обострило понимание того, что мирный атом требует особого подхода.
Однако опасность атомной энергетики лежит не только в сфере аварий и катастроф. Даже когда АЭС работает нормально, она обязательно выбрасывает изрядное количество радиоактивных изотопов (углерод-14, криптон-85, стронций-90, йод-129 и 131). Нужно отметить, что состав радиоактивных отходов и их активность зависят от типа и конструкции реактора, от вида ядерного горючего и теплоносителя. Так, в выбросах водоохлаждаемых реакторов превалируют радиоизотопы криптона и ксенона, в графитогазовых реакторах – радиоизотопы криптона, ксенона, йода и цезия, в натриевых быстрых реакторах – инертные газы, йод и цезий.
Рис. 3. Влияния АЭС на окружающую среду
Обычно, когда говорят о радиационном загрязнении, имеют в виду гамма-излучение, легко улавливаемое счетчиками Гейгера и дозиметрами на их основе. В то же время есть немало бета-излучателей, которые плохо обнаруживаются существующими массовыми приборами. Также как радиоактивный йод концентрируется в щитовидной железе, вызывая ее поражение, радиоизотопы инертных газов, в 70-е годы считавшиеся абсолютно безвредными для всего живого, накапливаются в некоторых клеточных структурах растений (хлоропластах, митохондриях и клеточных мембранах). Одним из основных выбрасываемых инертных газов является криптон-85. Количество криптона-85 в атмосфере (в основном за счет работы АЭС) увеличивается на 5 % в год. Еще один радиоактивный изотоп, не улавливаемый никакими фильтрами и в больших количествах производимый всякой АЭС – углерод-14. Есть основания предполагать, что накопление углерода-14 в атмосфере (в виде CO2) ведет к резкому замедлению роста деревьев. Сейчас в составе атмосферы количество углерода-14 увеличено на 25% по сравнению с доатомной эрой.
Важной особенностью возможного воздействия АЭС на окружающую среду является необходимость демонтажа и захоронения элементов оборудования, обладающих радиоактивностью, по окончании срока службы или по другим причинам. До настоящего времени такие операции производились лишь на нескольких экспериментальных установках.
При нормальной работе в окружающую среду попадают лишь немногие ядра газообразных и летучих элементов типа криптона, ксенона, йода. Расчёты показывают, что даже при увеличении мощностей атомной энергетики в 40 раз её вклад в глобальное радиоактивное загрязнение составит не более 1% от уровня естественной радиации на планете.
На электростанциях с кипящими реакторами (одноконтурными) большая часть радиоактивных летучих веществ выделяется из теплоносителя в конденсаторах турбин, откуда вместе с газами радиолиза воды выбрасываются эжекторами в виде парогазовой смеси в специальные камеры, боксы или газгольдеры выдержки для первичной обработки или сжигания. Остальная часть газообразных изотопов выделяется при дезактивации растворов в баках выдержки.
На электростанциях с реакторами, охлаждаемыми водой под давлением, газообразные радиоактивные отходы выделяются в баках выдержки.
Газообразные и аэрозольные отходы из монтажных пространств, боксов парогенераторов и насосов, защитных кожухов оборудования, ёмкостей с жидкими отходами выводятся с помощью вентиляционных систем с соблюдением нормативов по выбросу радиоактивных веществ. Воздушные потоки из вентиляторов очищаются от большей части аэрозолей на тканевых, волокнистых, зерновых и керамических фильтрах. Перед выбросом в вентиляционную трубу воздух проходит через газовые отстойники, в которых происходит распад короткоживущих изотопов (азота, аргона, хлора и др.).
Помимо выбросов, связанных радиационным загрязнением, для АЭС, как и для ТЭС, характерны выбросы теплоты, влияющие на окружающую среду. Примером может служить атомная электростанция «Вепко Сарри». Её первый блок был пущен в декабре 1972 г., а второй – в марте 1973 г. При этом температура воды у поверхности реки вблизи электростанции в 1973г. была на ≈4ºC выше температуры в 1971г. и максимум температур наблюдался на месяц позже. Выделение тепла происходит также в атмосферу, для чего на АЭС используются т.н. градирни. Они выделяют 10-400 МДж/(м²·ч) энергии в атмосферу. Широкое применение мощных градирен выдвигает рад новых проблем. Расход охлаждающей воды для типового блока АЭС мощностью 1100 МВт с испарительными градирнями составляет 120 тыс. т/ч (при температуре окружающей воды 14ºC). При нормальном солесодержании подпиточной воды за год выделяется около 13,5 тыс. т солей, выпадающих на поверхность окружающей территории. До настоящего времени нет достоверных данных о влиянии на окружающую среду этих факторов.
На АЭС предусматриваются меры для полного исключения сброса сточных вод, загрязнённых радиоактивными веществами. В водоёмы разрешается отводить строго определённое количество очищенной воды с концентрацией радионуклидов, не превышающей уровень для питьевой воды. Действительно, систематические наблюдения за воздействием АЭС на водную среду при нормальной эксплуатации не обнаруживают существенных изменений естественного радиоактивного фона. Прочие отходы хранятся в ёмкостях в жидком виде или предварительно переводятся в твёрдое состояние, что повышает безопасность хранения.
- 11. Основы государственного управления энергосбережением
- 12. Перспективы энергосбережения России.
- 13. Энергетическая стратегия России до 2020 года.
- 16 Основные направления снижения удельных расходов топлива на тэс.
- 17 Новые технологии в производстве тепловой и эл. Энергии на тэс
- 21. Водные ресурсы России.
- 25. Солнечная энергетика.
- 26 Мини гэс
- 27 Биоэнергетика
- 28. Энергия морей и океанов
- 29 Перспективы использования нетрадиционных источников энергии
- 30. Коммерческие потери электроэнергии в электрических сетях.
- 31. Распределение небаланса в электрических сетях.
- 32 Мероприятия по снижению потерь электрической энергии в распределительных сетях
- 33 Невозобновляемые источники энергии и окружающая среда
- 34. Переработка сернистых топлив перед сжиганием на тэс.
- 35. Снижение выбросов окислов азота на теплоэлектростанциях.
- 36. Способы снижения содержания окислов азота в продуктах сгорания.
- 37. Золоулавливание на тепловых электростанциях.
- 38. Возобновляемые источники энергии и окружающая среда.
- 39. Особенности воздействия объектов гидроэнергетики на окружаю-
- 40. Влияние аэс на окружающую среду.
- 41. Общие направления энергосбережения на промышленном предприятии
- 42. Влияние качества электрической энергии на энергосбережение
- 45. Экономия электроэнергии на предприятиях черной металлургии.
- 46. Энергосбережение в цветной металлургии.
- 1 КВт установленной мощности полупроводникового выпрямительного агрегата.
- 47. Экономия электроэнергии в электротермических установках
- 48. Экономия электроэнергии в электролизных установках.
- 49. Основные вопросы ресурсосбережения в машиностроении.
- 50. Энергосбережение в машиностроении
- 51. Утилизация отходов промышленности
- 65. Виды энергетического обследования. Существуют несколько видов энергетических обследований организаций.
- 80. Входной контроль информации: Целью данного этапа является критический анализ собранной на предыдущих этапах информации для того чтобы предложить пути снижения затрат на энергоресурсы.
- 81. Статистический контроль информации: На данном этапе осуществляется сбор статистических данных и первичной информации, который включает:
- 88). Технический отчет об энергетическом обследовании
- 89). Основание для проведения энергетического обследования
- 92) В энергетический паспорт должны быть включены следующие разделы:
- 94). Энергопаспорт: структура документа
- 99 Разработка распорядительных документов по энерго- и ресурсосбережению.
- 6. Экономическое и организационное направление энергосбережения
- 101 Классификация энергосберегающих мероприятий.
- 6. Экономическое и организационное направление энергосбережения
- 102 . Общая методология решения задач энергосбережения в организации.
- 103 . Экономические методы проектного анализа.
- 104 . Энергетический менеджмент.
- 106 Методы и критерии оценки энергосберегающих проектов.
- 107 Организационные мероприятия по энергосбережению
- 109. Показатели эффективности энергосберегающих проектов.
- 110 Правовые механизмы регулирования энергосбережения. Информационное обеспечение энергосбережения
- 113. Экономическое стимулирование энергосбережения.
- 114. Методы стимулирования энергосбережения за рубежом.
- 115. Координация работ в области энергосбережения.