5.3. Рослини-індикатори і рослини-монітори
За особливостями реакції на вплив забруднювачів рослини поділяють на рослини-індикатори й рослини-монітори.
Рослина-індикатор – рослина, у якої ознаки ушкодження виявляються при впливі фітотоксичної концентрації забруднюючих речовин або їх суміші.
Рослина-індикатор є хімічним сенсором, який може виявити в повітрі присутність забруднюючої речовини, але спостереження за нею не дають змоги отримати дані про її кількість.
Індикаторами можуть бути такі рослини, які акумулюють у тканинах забруднюючу речовину або продукти метаболізму, утворені внаслідок взаємодії рослини із зовнішніми чинниками: важкими металами (свинець і кадмій), газоподібними речовинами, такими як фтористий водень (НF) або сульфат (SО4). Внаслідок їх дії у рослин можуть змінюватись параметри розвитку: швидкість і якість росту і дозрівання, цвітіння, утворення плодів і насіння, процесів розмноження; знижуватися продуктивність і врожайність. Кожний параметр окремо або їх комплекс можна використати, щоб визначити наявність забруднюючих речовин у повітрі і (за допомогою проведення дослідів) у контрольованих умовах для того, щоб зіставити ознаки ушкодження або зміни у стані рослини з наявністю певної забруднюючої речовини або їх суміші. Такі дослідження засвідчили, наприклад, що тютюн дуже чутливий до дії озону і реагує характерними ушкодженнями. Також виявлено, що кількість зав’язі і врожайність помідорів значно зменшуються при хронічному впливі на цю рослину озону у низьких концентраціях. У соєвих бобів за дії певних доз SО2 з’являються небажані ознаки, змінюються швидкість росту і врожайність.
Лишайники і мохи відомі як накопичувачі забруднюючих речовин, переважно важких металів, які ці рослини можуть акумулювати у кількостях, що значно перевищують їх концентрацію в навколишньому середовищі.
Отже, поява у рослин типової ознаки ушкодження вказує на наявність у повітрі забруднюючої речовини або їх суміші.
Зважаючи на важливість кількісної оцінки, особливо інформативними є організми, які у певний спосіб реагують саме на кількість забруднювача у довкіллі, тобто рослини-монітори.
Рослина-монітор – рослина, за ознаками ушкодження на якій можна отримати інформацію про кількість забруднюючих речовин або їх суміші у довкіллі.
Звичайно, з цією метою використовують різноманітні прилади. Однак прилади коштують дуже дорого, для їх роботи необхідні живлення, калібрування, спостереження за функціонуванням. Іноді вони надто чутливі і непридатні для роботи в умовах суворого клімату. На відміну від них рослини дешеві, легко відновлюються, швидко розмножуються і по-різному реагують на вплив, даючи змогу вибрати одну або кілька найхарактерніших реакцій для певного дослідження. Можна також використати недовговічні (трав’яні) рослини, які оновлюються кожного сезону чи кілька разів протягом одного вегетаційного періоду, або дерев’янисті рослини (дерева, кущі), котрі можна висадити на потрібних ділянках і використовувати як індикатори протягом довгого періоду.
Для того щоб індикатор став монітором, тобто міг інформувати про якісні і кількісні характеристики забруднювача, необхідно визначити і використати залежності між реакцією рослин на забруднення і концентрацією цієї речовини в навколишньому середовищі. Для цього використовують три основні способи:
зіставлення ступеня ушкодження, спричиненого забруднюючою речовиною, із відомою концентрацією забруднюючої речовини у довкіллі;
використання рослини як живого колектора (накопичувача забруднюючих речовин);
вимірювання кількості забруднюючої речовини або метаболітів (новоутворених речовин), які з’явилися в рослинних тканинах після дії забруднювача, і зіставлення отриманих значень з концентрацією забруднюючої речовини в повітрі.
Оскільки внаслідок притаманної рослинам змінності види і сорти рослин порізному реагують на вплив негативних факторів, слід відбирати ті рослини, реакція яких передбачувана. Такими є мохи, папороті, голо- і покритонасіннєві, які використовують як біоіндикатори і (або) біомонітори.
Отже, моніторинг природних популяцій можна поєднувати із розведенням та селекцією з метою отримання чутливих до впливу забруднюючих речовин рослин з передбачуваними реакціями. Можливе виведення нових видів рослин, придатних для моніторингу забруднення повітря.
При проведенні дослідів з метою моніторингу довкілля вивчають ознаки ушкодження рослин, зміни їх в рості та розмноженні, зниження врожайності або продуктивності, а також зміни ареалів поширення різних видів. Однак такі реакції також значною мірою залежать від віку рослини, факторів довкілля та способів обробітку ґрунту. Тип ґрунту, вміст в ньому мінеральних речовин, відносна вологість, топографічні та метеорологічні умови впливають на тип реакції рослини, на дію певної концентрації або дози будь-якої забруднюючої речовини або їх суміші. У зв’язку із змінністю рослин навіть на території певної популяції при здійсненні моніторингу необхідно використовувати багато різних рослин і розміщувати їх у такий спосіб, щоб вони підлягали максимальному впливу вітрів.
Оцінювання реакції рослин на забруднення. У польових умовах необхідний ретельний відбір рослин для встановлення залежності “доза – відповідна реакція”. Якщо рослина реагує на вплив ушкодженням листків, зміною темпів росту, врожайності, слід експериментально з’ясувати, як вона реагує на різні дози однієї і тієї самої речовини або суміші.
Ушкодження листя можна аналізувати за допомогою серії фотознімків методом прямих порівнянь знімків ураженого листя з контрольними знімками листя рослин, які зазнали впливу відомих концентрацій забруднюючих речовин в лабораторних умовах. Поділ досліджуваної ділянки з великою кількістю рослин на квадрати дає змогу виразити кількісно дані про пошкодження листя, з’ясувавши кількість їх ушкоджень; ступінь ушкодження; чисельність ушкоджень на одиницю поверхні. За допомогою лінійних графіків можна відобразити залежності ушкодження листя від періоду дії та дози забруднюючої речовини. Ці криві можна порівняти з кривими “доза – відповідна реакція”, отриманими в лабораторних умовах. У такий спосіб можна визначити якісний склад повітря протягом певного періоду і встановити вид забруднюючої речовини або склад суміші.
Певний метод кількісної оцінки обирають залежно від рослинного матеріалу, забруднюючої речовини та вимірюваних параметрів, які потребують дослідження. Ступінь ушкодження листя трав’янистих рослин з’ясовують візуально, визначаючи площу (у відсотках) ушкодженої поверхні листя. У разі спостереження за хвойними рослинами оцінюють довжину голок, їх колір і форму, вік хвої, кількість ушкоджених голок на гілці (у відсотках).
Результати спостережень можна об’єднати в дві групи: площа ушкодженої листкової поверхні (у відсотках); площа нових ушкоджень кожної рослини за визначений період часу.
Якщо рівень забруднення визначається за обсягом поглинання забруднюючої речовини, з’ясовують кількість забруднюючої речовини або кількість метаболітів, спричинених забруднювачем. Вміст сульфату в тканинах слід зіставити з концентрацією SО2 в навколишньому середовищі, фтору – із концентрацією НF. Для порівняння результатів різних досліджень необхідна стандартизація методів збирання та оброблення рослинного матеріалу і приладів, які використовуються.
Рослини-колектори молена успішно використовувати для моніторингу важких металів. Наприклад, мох здатний поглинати такі важкі метали, як цинк, свинець, кадмій, нікель, мідь та магній. Метали не тільки накопичуються в листі лишайників, а й поглинаються їх тілом та акумулюються в тканинах. Висушивши, зваживши і здійснивши хімічний аналіз тканини зібраних рослин, можна визначити кількість поглинутого металу. Змінюючи проміжки часу між зборами рослин, можна зіставити вміст металу в їх тканинах із концентрацією металу в повітрі.
Лишайники можна використовувати для контролю вмісту SО2 в навколишньому середовищі. Здатність до акумуляції SО2 залежить від виду цих рослин. Поєднання методів інструментального моніторингу із спостереженнями за лишайниками дасть змогу встановити залежність між їх ростом і концентрацією SО2 в довкіллі. Швидкість росту і колір лишайника вказують на присутність або відсутність SО2 і його приблизну концентрацію в повітряних масах. Цей метод використовують при моніторингу SО2 в Англії, Ірландії, Канаді, Франції, Швеції та СПІА.
Відбір і підготовка біологічних матеріалів для біомоніторингу. Отримання достовірних, повних і точних даних за допомогою біоіндикації можливе лише у разі точного дотримання низки вимог. Так, при виборі рослини для використання її в ролі біомонітора необхідно дотримуватися таких умов:
наявність у рослини вираженої реакції на вплив забруднюючої речовини, тобто помітних ознак ушкодження, змін швидкості росту, морфологічних змін, порушень цвітіння, змін продуктивності або врожайності;
відбір рослин, невибагливих до умов вирощування і догляду;
відбір рослин, які мало піддаються впливу шкідників та хвороб.
Отримання усереднених зразків матеріалів рослинного походження (сформованих з 5-6 разових проб) є складним завданням, що потребує правильного обрання місця, способу і часу. Рослинні зразки слід збирати на достатньо великій відстані від будівель, доріг і джерел забруднюючих речовин. Досліджувану ділянку умовно розділяють на кілька квадратів, з кожного рівномірно відбирають рослинний матеріал (листя, стебла, кору) в необхідній кількості. Пробу рослин (цілі чи окремі частини) збирають у першій половині дня за сухої погоди. На ранніх стадіях розвитку (2-3 листки) у ній має бути не менше 10 рослин з одного гектара; для гречки, гороху, зернових – 25-30; у високорослих рослин беруть нижні, добре розвинуті листки (не менше 50 рослин). Проба повинна бути репрезентативною, тобто забезпечувати відповідність її хімічного складу хімічному складові аналізованого матеріалу (наприклад, кількість рослинного матеріалу квітів – 300 г, подрібненого листя і трави – 200 г, трави – 400…600 г, кори і коренів – 600…650 г).
Паралельно з відбором проб проводять біологічний облік відібраних рослин (висота рослин, кількість пагонів на одній рослині, фази розвитку).
Аналізи рослинних зразків проводять відразу, або зберігають їх у холодильнику.
Призначений для аналізу рослинний матеріал передусім очищують від піску, землі та інших механічних домішок. Після цього листки, плоди і насіння обов’язково просушують до повітряно-сухого стану (крім випадків, коли необхідно зробити аналіз рослинного зразка у сирому вигляді), пробу гомегенізують (подрібнюють). Сирі рослинні матеріали подрібнюють у міксері або іншому гомогенізаторі, використовуючи чистий скляний посуд і зроблене з нержавіючої сталі дробильне обладнання. Інтенсивної вентиляції зразка при гомогенізації треба уникати, бо це може призвести до втрат деяких компонентів, особливо тих, які легко окислюються.
Сухі і висушені продукти (зерно, насіння) подрібнюють спеціальними млинками, іноді просівають ситом із визначеними розмірами отворів, щоб отримати потрібну зернистість. Зразки біологічного походження перед аналізом, зазвичай, мінералізують сухим (спалювання органічної речовини за вільного доступу повітря, в результаті чого залишаються мінеральні елементи перевалено у вигляді оксидів металів) або вологим (озолювання органічної речовини розчинами кислот, внаслідок чого утворюється розчин з мінеральними речовинами) методами. Щоб при сухій мінералізації (озоленні) не втратити летючі компоненти, рослинний зразок нагрівають до температури не вище 450°С. Оскільки при цьому у більшості випадків не вдається повністю позбутися органічних компонентів, до золи додають концентровану азотну кислоту і випарюють насухо. Для позбавлення від решток вуглецю використовують метод випарювання із соляною кислотою на піщаній бані. Елементи мінерального залишку визначають за допомогою певних хімічних реакцій.
У деяких випадках застосовують метод мінералізації зразка вологим способом за допомогою таких речовин, як азотна кислота, азотна кислота і соляна кислота з добавкою перекису водню, сірчана кислота і соляна кислота. У досліджувану пробу доливають суміші кислот, залишають на певний період до обвуглення рослинної маси. Після цього розчин підігрівають на слабкому вогні 5..7 хв до утворення однорідної коричнево-бурої маси, температуру озолення підвищують і продовжують його. Повне озолення триває 15…20 хв. Після його закінчення розчин охолоджують, розбавляють дистильованою водою і визначають потрібні елементи, застосовуючи характерні для того чи іншого елемента хімічні реакції.
Отже, головною умовою достовірності результатів біомоніторингу є правильне відбирання рослинної проби, її підготовка до аналізу та проведення самого аналізу.
- Атмосферного
- Навчальний посібник Кам’янець-Подільський
- Передмова
- Частина і оцінка антропогенно-техногенного забруднення атмосферного повітря
- Розділ 1 Атмосфера і її роль. Джерела і наслідки забруднення атмосфери
- 1.1. Атмосфера – зовнішня оболонка Землі
- 1.2. Будова атмосфери
- 1.3. Забруднення атмосфери і його види
- 1.4. Джерела забруднення атмосфери
- 1.5. Основні хімічні домішки, що забруднюють атмосферу
- 1.6. Наслідки забруднення атмосфери
- 1.6.1. Зміна природного складу і параметрів атмосфери
- 1.6.2. Кислотні опади
- 1.6.3. Запустелювання
- 1.6.4. Забруднення атмосфери біологічними домішками
- Розділ 2 Нормування впливу техногенних об’єктів на атмосферне повітря
- 2.1. Показники нормування забруднюючих речовин в повітрі
- 2.2. Оцінка стану повітряного середовища
- 2.3. Науково-технічні нормативи на гранично допустимі викиди
- 2.4. Інструменти економічного механізму охорони атмосферного повітря
- 2.5. Порядок встановлення нормативів збору за забруднення і погіршення якості атмосферного повітря
- Розділ 3 Організація спостережень за забрудненням атмосферного повітря
- 3.1. Загальні вимоги до організації спостережень за забрудненням атмосферного повітря
- 3.2. Види постів спостережень, програми і терміни спостережень
- 3.3. Лабораторії спостереження і контролю за забрудненням атмосферного повітря
- 3.4. Автоматизовані системи спостереження і контролю за станом атмосферного повітря
- Розділ 4 Оцінювання забруднення атмосферного повітря на основі даних лабораторних спостережень
- 4.1. Методи оцінювання забруднення атмосферного повітря
- 4.2. Методи відбору проб атмосферного повітря для лабораторного аналізу
- 4.3. Метеорологічні спостереження при відборі проб повітря
- 4.4. Оцінювання стану атмосферного повітря за результатами спостережень
- Розділ 5 Оцінювання забруднення атмосферного повітря на основі спостережень за біологічними об’єктами
- 5.1. Біоіндикація атмосферного повітря
- 5.2. Забруднюючі речовини і їх суміші, які впливають на рослинний покрив
- 5.3. Рослини-індикатори і рослини-монітори
- Частина іі технологія захисту атмосфери від викидів шкідливих газів та пари
- Розділ 6 Методи захисту атмосферного повітря від шкідливих викидів
- 6.1. Основні напрямки захисту атмосфери від шкідливих домішок
- 6.2. Методи і системи очищення повітря від газоподібних домішок
- Розділ 7 Абсорбційна і хемосорбційна очистка газових викидів
- 7.1. Використання методів абсорбції і хемосорбції для вловлювання газоподібних домішок
- 1 − Абсорбер; 2 − холодильник; 3 − десорбер; 4 − теплообмінник
- 7.2. Конструкції і принцип дії абсорберів
- 7.2.1. Насадочні абсорбери
- 1 − Сідло Берля; 2 − кільце Рашига; 3 − кільце Палля; 4 − розетка Теллера; 5 − сідло “Інталокс”
- 7.2.2. Тарілчасті абсорбери
- 7.2.3. Розпилюючі абсорбери
- 7.3. Розрахунок абсорбційних і хемосорбційних апаратів
- 7.3.1. Розрахунок насадочних абсорберів
- 7.3.2. Розрахунок тарілчастих абсорберів
- 7.3.3. Розрахунок розпилюючих абсорберів
- 7.4. Десорбція забруднювачів із абсорбентів
- Розділ 8 Адсорбційна очистка газових викидів
- 8.1. Використання методу адсорбції для вловлювання газоподібних сполук
- 8.2. Будова і принцип дії адсорберів
- 8.2.1. Адсорбери періодичної дії
- 1 − Точка проскакування; 2 − адсорбційна зона; о.Н. − об’єм, заповнений насадкою
- 1 − Адсорбер; 2, 10, 12 − вентилятори; 3 − фільтри; 4 − вогнезагороджувач; 5, 8 − холодильник; 6 − розподільник; 7 − конденсатор; 9 − збірник;
- 11 − Калорифер; 13 − гідрозасув
- 8.2.2. Адсорбери безперервної дії
- 1 − Зона адсорбції; 2 − розподільні тарілки; 3 − холодильник; 4 − підігрівач; 5 − затвор
- 1 − Псевдозріджений шар; 2 − решітка; 3 − переточний пристрій; 4 − затвор
- 1 − Основний псевдозріджений шар; 2 − додатковий шар; 3 − решітка
- 1, 2 − Патрубки; 3 − решітка; 4 − конус
- 1 − Корпус перетоку 2 − щілина; 3 − похила решітка; 4 − решітка
- 8.3. Принципи розрахунку адсорберів
- 8.3.1. Розрахунок адсорберів періодичної дії
- 8.3.2. Розрахунок адсорберів безперервної дії
- 8.4. Десорбція адсорбованих продуктів
- Розділ 9 Конденсаційне очищення газових викидів
- 9.1. Використання конденсаційного очищення газів і пари
- 9.2. Принцип конденсаційного очищення
- 9.3. Типи і конструкції конденсаторів
- 9.4. Розрахунок конденсаторів
- Розділ 10 Термокаталітична і термічна очистка газових викидів
- 10.1. Термокаталітична очистка газових викидів
- 10.2. Термічні методи знешкодження газоподібних сполук
- 10.2.1. Установки термознешкодження газових викидів
- 1 − Гідрозасув; 2 − вогнезагороджувач; 3 − основний пальник; 4 − черговий пальник; 5 − система запалення чергового пальника
- 1 − Реактор; 2 − ежекційний змішувач; 3 − електрозапал; 4 − черговий пальник; 5 − основний пальник; 6 − насадка-вогнезагороджувач
- 1 − Факельний пальник; 2 − труба; 3 − розривні мембрани; 4 − вогнезагороджувач; 5 − інжекційний змішувач з електрозапалом; 6 − система запалення чергового пальника
- 1 − Черговий пальник; 2 − повітряна труба; 3 − захисний козирок; 4 − корпус факельного пальника; 5 − парова дюза; 6 − кишеня для термопари
- 10.2.2. Принципи розрахунку установок термознешкодження
- Розділ 11 Очистка газових викидів автомобільного транспорту
- 11.1. Характеристика викидів двигунів внутрішнього згорання
- 11.2. Зниження викидів двигунів внутрішнього згорання
- 11.3. Нейтралізація вихлопів двигунів внутрішнього згорання
- 11.4. Вловлювання аерозолів, що викидаються дизельним двигуном
- Розділ 12 Оцінка ефективності очищення газових викидів
- 12.1. Оцінка ефективності пристроїв для очищення газових викидів
- 12.2. Вибір варіантів газоочистки
- Частина ііі технологія захисту атмосфери від аерозольних пилових викидів Розділ 13 Методи і системи очищення повітря від аерозолів
- 13.1. Характеристики аерозольних викидів в атмосферу
- 13.2. Класифікація методів і апаратів для очищення аерозолів
- 13.3. Основні характеристики апаратів для очистки аерозолів
- Розділ 14 Механічне пиловловлювання
- 14.1. Пилоосаджувальні камери
- 14.2. Циклонні осаджувачі
- 14.2.1. Конструкції циклонів
- 14.2.2. Розрахунок циклонів
- 14.3. Вихрові пиловловлювачі
- Розділ 15 Фільтрування аерозолів
- 15.1. Волокнисті фільтри
- 15.2. Тканинні фільтри
- 15.2.1. Фільтрувальні тканини
- 15.2.2. Рукавні фільтри
- 15.3. Зернисті фільтри
- 15.4. Розрахунок і вибір газових фільтрів
- Розділ 16 Мокре пиловловлювання
- 16.1. Порожнисті газопромивачі
- 16.2. Зрошувані циклони з водяною плівкою
- 16.3. Пінні пиловловлювачі
- 16.4. Ударно-інерційні пиловловлювачі
- 16.5. Швидкісні пиловловлювачі (скрубери Вентурі)
- Розділ 17 Електричне очищення газів
- 17.1. Принцип дії електрофільтрів
- 17.2. Конструкції електрофільтрів
- 17.3. Підбір і розрахунок електрофільтрів
- Розділ 18 Вдосконалення процесів і апаратів для пилогазоочистки
- 18.1. Спеціалізація апаратів
- 18.2. Попередня обробка аерозолів
- 18.3. Режимна інтенсифікація
- 18.4. Конструктивно-технологічне вдосконалення
- 18.5. Багатоступінчате очищення
- Додатки
- Нормативи збору, який справляється за викиди основних забруднюючих речовин від стаціонарних джерел забруднення
- Технічні дані лабораторії “Атмосфера-іі”
- Технічні дані станції “Повітря-1”
- Технічні дані електроаспіратора типу еа-1
- Технічні дані електроаспіратора типу еа-2
- Технічні дані повітровідбірника “Компонент”
- Блок-схема структури технічних засобів станції “Повітря-1”
- Класифікація засобів відбору проб повітря
- Характеристики фільтрів, які використовуються при відборі проб атмосферного повітря (аналітичні фільтри для аерозолей афа)
- Характеристики витратомірних приладів
- Значення коефіцієнтів b, с для розрахунку швидкості газу при захлинанні
- Характеристики насадок (розміри дані в мм)
- Значення коефіцієнта Генрі e для водних розчинів деяких газів (у таблиці дані значення e∙10-6 в мм рт. Ст.)
- Коефіцієнти дифузії газів і пари в повітрі (за нормальних умов)
- Атомні об’єми деяких елементів і молярні об’єми деяких газів
- Рівноважні дані по адсорбції пари бензолу із їх суміші з повітрям на активному вугіллі різних марок
- Значення коефіцієнтів а1 і в1 для деяких речовин розчинних у воді
- Фізико-хімічні властивості речовин
- Межі температур і величини тиску, що рекомендуються, для деяких рідких холодоносіїв
- Термічний опір δ/λ відкладення на стінці труби при обмиванні її різними середовищами
- Коефіцієнти густини ρ і теплопровідності λ деяких металів і сплавів
- Межі рекомендованих значень коефіцієнта n для визначення числа Nu в перехідному режимі
- Температури самозаймання Tс найбільш поширених горючих забруднювачів відхідних газів промисловості
- Література