Непосредственное влияние на летно-технические и взлетно-посадочные характеристикисамолета.
Непосредственное влияние на ЛТХ и ВПХ самолета оказывают (температура и давление воздуха, гололед, обледенение). При понижении температуры наружного воздуха увеличивается его плотность, увеличивается расход воздуха через двигатель, увеличивается тяга двигателя, и хотя сопротивление тоже несколько увеличивается, характеристики самолета становятся лучше: возрастают максимальная скорость полета, скороподъемность самолета, потолок, уменьшаются расход топлива, скорость отрыва и касания, длина разбега и пробега. Изменение давления сказывается на ВПХ, также за счет изменения плотности. Влияние на ЛТХ исключается тем, что высота определяется барометрическим методом и изменение давления воспринимается как изменение высоты. Гололед, понижая сцепление колес с ВПП, приводит к увеличению длины пробега. Обледенение, т.е. нарастание льда на поверхности самолета, ухудшает аэродинамические обводы, может уменьшать проходное сечение в/з, что приводит к ухудшению всех летных характеристик.
Таким образом, летные данные одного и того же самолета могут заметно изменяться в зависимости от состояния атмосферы, т. е. в зависимости от времени и места проведения летных испытаний. Для сравнения результатов летных испытаний, полученных в разных полетах при различных атмосферных условиях, необходимо приводить результаты испытаний к единообразным условиям. Для этого разработана условная среднестатистическая модель атмосферы – Международная стандартная атмосфера,к условиям которой и приводят результаты летных испытаний самолетов.
Международная стандартная атмосфера (МСА или СА)является системой взаимосогласованных международных ГОСТов и содержит значения основных термодинамических параметров и других физических характеристик атмосферы.
Представленные в таблицах СА исходные значения параметров воздуха на уровне моря, а также законы изменения температуры и молекулярного веса воздуха в зависимости от высоты получены на основании экспериментальных данных (результаты обработки среднегодовых изменений параметров воздуха над областями, расположенными в Северном полушарии на 40—50° географической широты) и соответствующих теоретических представлений.
Таблицы СА содержат характеристики атмосферы (чистого сухого воздуха постоянного состава) для высот от -2 до 120 – 200 км. Отрицательные высоты даны в СА в связи с тем, что в некоторых случаях при обработке результатов летных испытаний ими приходится пользоваться.
В качестве нулевой высоты в СА принят уровень моря, которому соответствуют следующие исходные данные:
а) барометрическое давление воздуха на широте 45°32'40" при температуре ртути, равной 273,15° К и средней плотности ртути 13595,1 кг/м3, что составляетр0 =101325 Па = 1013,25 мбар = 760 мм рт. ст.;
б) температура воздуха То = +15°С = 288,15° К (273,15°+15°);
в) плотность воздуха ρ0 = 1,225 кг/м3 = 0,12492 кгс×сек2/м4;
Эти условия состояния воздуха называются нормальными атмосферными условиями.
В МСА приняты следующие законы изменения параметров:
Температура изменяется по разным линейным законам в зависимости от высоты (для различных слоев) и рассчитывается по формуле:
Т — в Кельвинах, Н — в километрах,
β — градиент изменения температуры,
индекс *обозначает параметры на нижней границе слоя.
Различаются следующие слои:
- от -2 до 11 км — β= -6,5°/км при +15°С (288,15 К) на Н=0км — тропосфера;
- от 11 до 20 км — β= 0, Т постоянна и равна -56,5°С (216,65 К) — тропопауза, нижний слой стратосферы;
- от 20 до 32 км — β= +1°/км при -56,5°С (216,65 К) на Н=20км— стратосфера;
- от 32 до 47 км — β= +2,8°/км при -44,5°С (228,65 К) на Н=32 км— стратосфера;
и так далее.
Давлениеизменяется по сложной экспоненциальной зависимости от высоты и температуры.
для β ≠ 0 и
для β = 0
Индекс *обозначает параметры на нижней границе слоя.
Плотностьрассчитывается по уравнению состояния газа в зависимости от давления и температуры.
Другие параметры рассчитываются по различным теоретическим или эмпирическим зависимостям.
Для оценки летных характеристик и работы систем самолета (например, СКВ, противообледенительной системы и др.) результаты испытаний приводят не только к стандартным условиям, но и к условиям, отличающихся от стандартных на заданную величину.
- Испытания авиационной техники.
- 1. Определение и общие сведения об испытаниях. Виды испытаний. Место испытаний в процессе разработки и изготовления ла.
- 2. Испытательные организации и подразделения. Специалисты.
- 3. Документы, регламентирующие летно-испытательную работу.
- 4. Организация и проведение ли.
- Лекция 2. Основы авиационной метеорологии.
- 1. Определение.
- 2. Строение атмосферы.
- 3. Состояние атмосферы. Ее влияние на характеристики ла. Мса.
- Непосредственное влияние на летно-технические и взлетно-посадочные характеристикисамолета.
- Влияние состояния атмосферы на эксплуатационные характеристики.
- Влияние состояния атмосферы на безопасность полета
- 4. Характеристики метеорологических элементов и метеорологических явлений. Температура.
- Суточные изменения температуры
- Годовые изменения температуры
- Влияние температуры на работу авиации
- Измерение температуры воздуха
- Давление.
- Плотность
- Измерение характеристик ветра.
- Влияние ветра на работу авиации.
- Вертикальные движения воздуха.
- Турбулентность. Болтанка.
- Глобальная циркуляция атмосферы.
- Струйные течения.
- Воздушные массы
- Атмосферные фронты.
- Влажность
- Облачность
- Влияние облачности на производство полетов
- Наблюдение за облаками.
- Туманы.
- Осадки. Причины образования осадков
- Виды осадков
- Измерение осадков
- Влияние осадков на работу авиации
- Прозрачность воздуха. Видимость.
- Обледенение.
- Работа метеослужб в авиации.
- Лекция 3. Классификация испытаний ла по определяемым характеристикам. Наземные испытания. Летные испытания. Порядок проведения испытаний. Рулежки, пробежки, подлеты, первый вылет.
- 1. Наземные испытания.
- 2. Летные испытания.
- 3. Порядок проведения испытаний.
- 4. Рулежки, пробежки, подлеты, первый вылет.
- Лекция 6. Летные испытания. Понятие об устойчивости. Понятие об управляемости. Характеристики продольной устойчивости и управляемости самолета. Определение характеристик продольной устойчивости в ли.
- 2.5.1.Понятие об устойчивости.
- 2.5.2. Понятие об управляемости.
- 2.5.3. Характеристики продольной устойчивости и управляемости самолета.
- 1. Характеристики статической устойчивости.
- Лекция 8. Летные испытания. Характеристики сваливания и штопора. Определение минимальных скоростей полета, характеристик сваливания и штопора в ли.
- Лекция 9. Летные испытания. Определение взлетно-посадочные характеристик. Определение маневренных характеристик. Летные прочностные испытания.
- 1. Определение взлетно-посадочных характеристик.
- 2. Летные прочностные испытания.
- 3. Определение маневренных характеристик.
- Лекция 10. Летные испытания. Испытания силовых установок, систем и оборудования ла.
- Форма льдообразований
- Испытания оборудования.
- Лекция 11. Летные испытания. Проверка влияния отказов систем ла на безопасность полета.
- Лекция 12. Летные испытания. Испытания на боевое применение. Испытания способов и средств аварийного покидания в полете. Опережающие ресурсные испытания.
- 1. Испытания систем вооружения на боевое применение.
- 2. Испытания способов и средств аварийного покидания в полете.
- 3. Опережающие ресурсные испытания.
- Лекция 13. Наземные испытания. Нивелировка. Взвешивание и центровка. Испытания самолетных систем.
- Лекция 14. Наземные испытания. Испытания оборудования самолета. Особенности серийных наземных и летных испытаний.
- 1. Наземные испытания оборудования самолета.
- 2. Особенности серийных наземных и летных испытаний (предъявительских, приемосдаточных и периодических).