Коэффициенты риска для развития стохастических эффектов
Число случаев на 100 000 человек при индивидуальной дозе облучения 10 мЗв. | ||||
Категории облучаемых | Смертель- ные случаи рака | Несмертель- ные случаи рака | Тяжелые наследуемые эффекты | Суммарный эффект: |
Работающий персонал | 4.0 | 0.8 | 0.8 | 5.6 |
Все население * | 5.0 | 1.0 | 1.3 | 7.3 |
* Все население включает не только здоровый работающий персонал, но и критические группы (дети, пожилые люди и т.д.).
| Одни части тела более чувствительны, чем другие: например, при одинаковой эквивалентной дозе облучения, возникновение рака в легких более вероятно, чем в щитовидной железе, а облучение половых желез особенно опасно из-за риска генетических повреждений. |
Рис. 7.1 Коэффициенты радиационного риска
- детерминистские (или нестохастические) последствия возникают при превышении минимальной дозы облучения (лучевая болезнь, половая стерильность и радиационные ожоги). В большинстве случаев при облучении всего организма она превышает 1 Зиверт (за исключением появления временной стерильности у мужчин при облучении в дозе 0,15 Гр, а также пороков и ненормального развития после воздействия 0,25 Гр радиационного облучения, полученного до 28 дней эмбрионального периода).
Развитие этих последствий можно избежать, если своевременно использовать меры защиты от воздействия ионизирующей радиации.
3.2. Основные меры защиты населения при авариях на ядерных реакторах зависит от этапа аварии на АЭС или взрыва ядерного боеприпаса:
-·начальный этап (несколько часов от начала аварийного выброса) - укрытие и простейшая защита органов дыхания, применение стабильного йода, эвакуация, контроль доступа в район загрязнения;
-·промежуточный этап (от нескольких первых часов до нескольких суток после наступления аварии) — переселение, санобработка людей, контроль пищевых продуктов и воды, использования заготовленных кормов для животных, медицинская помощь;
-·восстановительный этап (принимается решение о возвращении к нормальным условиям жизни, может растянуться на несколько десятков лет) — контроль доступа в район загрязнения, переселение, контроль воды и пищевых продуктов, кормов для животных, дезактивация территории.
3.2.1. Физическая защита. В основе указанных мер защиты лежат следующие физические методы снижения воздействия на организм внешнего ионизирующего излучения:
1. Временем - чем меньше время пребывания вблизи источника радиации, тем меньше полученная от него доза облучения.
2. Расстоянием - излучение уменьшается с удалением от компактного источника (пропорционально квадрату расстояния). Если на расстоянии 1 м от источника радиации дозиметр фиксирует 1000 мкР/час, то уже на расстоянии 5 м показания снизятся приблизительно до 40 мкР/час.
3. Экранированием источника излучения - между человеком и источником радиации должно оказаться как можно больше вещества. Чем его больше и чем оно плотнее, тем большую часть радиации это вещество поглотит.
Ослабляющее действие проникающей радиации принято характеризовать слоем половинного ослабления, т.е. толщиной материала, проходя через который интенсивность проникающей радиации уменьшается в два раза. Такой слой половинного ослабления для различных материалов следующий:
1. Свинец | 1.8 см | 4. Грунт, кирпич | 14 см |
2. Сталь | 2.8 см | 5. Вода | 23 см |
3. Бетон | 10 см | 6. Дерево | 30 см |
4. Дезактивацией (удалением радионуклидов) продуктов питания, воды, различных поверхностей.
5. Использованием средств защиты органов дыхания (повязки, маски и др.).
6. Санитарно-гигиеническими мероприятиями (умывание, бани и др.).
7. Регулярным проветривание и вентиляцией помещений, рабочих объемов (позволяет значительно уменьшить облучение радоном и продуктами его распада).
8. Уменьшением активности и количества источников ионизирующего излучения.
Таблица 7.2.
- Введение
- Памятка
- Ионизирующие излучения и дозы их измерения
- 2. Порядок выполнения работы:
- 3. Основные понятия радиационной безопасности
- Альфа-излучатели
- Бета-излучатели
- 3.3. Единицы измерения радиоактивности
- Основные физические величины, используемые в радиационной защите, и их единицы
- Взвешивающий радиационный коэффициент (wr)
- Взвешивающие коэффициенты для тканей и органов (wt)
- 4. Вопросы к зачету
- Дозиметрия ионизирующих излучений. Бытовые дозиметры и радиометры
- 2. Порядок выполнения работы:
- 3. Методы обнаружения и измерения радиоактивности
- 3.1. Детекторы ядерных излучений
- 3.2. Приборы дозиметрического контроля
- 3.3. Радиационный фон
- Среднегодовые эффективные эквивалентные дозы облучения человека за счёт всех источников излучения в (в мкЗв)
- Природные и техногенные источники ионизирующего излучения
- Значения мощности эквивалентной дозы, используемой при проектировании защиты от внешнего ионизирующего излучения
- Искусственные источники излучения (оценка средних годовых доз)
- 3.4. Загрязнение радиоактивное
- Допустимые уровни радиоактивного загрязнения рабочих поверхностей, кожи, спецодежды и средств индивидуальной защиты, част./(см2•мин.)
- 3.5 Устройство бытовых дозиметров.
- Измеренная мощность дозы
- 3.5.4. Оценка удельной активности радионуклидов в пробах.
- 4. Выводы по выполненной работе
- 5. Вопросы к зачёту
- Измерение удельной активности проб почвы
- 2. Порядок выполнения работы:
- 3. Загрязнение радионуклидами почвы
- Выброс радионуклидов во время аварии на Чернобыльской аэс
- Динамика радиационной обстановки после аварии на чаэс
- Зонирование территории республики по уровню радиоактивного загрязнения
- 4.4.4. Определение удельной активности пробы.
- 4.5. Обработка результатов измерения.
- Результаты исследования естественных радионуклидов в почве (Бк/кг).
- 5. Выводы по выполненной работе
- 6. Вопросы к зачёту.
- Определение удельной β-активности продуктов питания β-радиометром руб-01п1
- 2. Порядок выполнения работы:
- 3. Загрязнение радионуклидами продуктов питания
- Республиканские допустимые уровни содержания радионуклидов цезия-137 и строиция-90 в пищевых продуктах и питьевой воде (рду-2001).
- Удельный вес (%) проб пищевых продуктов из личных подсобных хозяйств с превышением рду-2001 по содержанию цезия-137
- 4.1. Назначение кнопок органов управления
- 4.2. Подготовка прибора к работе.
- 4.3. Измерение удельной активности радионуклидов в пробах.
- Результаты собственных исследований
- 5. Выводы по выполненной работе
- 6. Вопросы к зачету
- Определение удельной β-активности пищевых продуктов, выросших в лесу
- 2. Порядок выполнения работы
- 3. Радиоактивное загрязнение леса и его даров
- Удельный вес (%) проб грибов, лесных ягод, мяса диких животных, не отвечающих требованиям рду-2001 по содержанию цезия-137 (частный сектор)
- 4. Измерение β-активности пищевых продуктов, произрастающих в лесу
- 4.1. Подготовка радиометра крвп-зб к работе и проверка его работоспособности.
- 4.2. Измерение радиоактивного фона
- 4.3. Измерение активности пробы пищевого продукта
- Результаты собственных измерений
- 5. Выводы по выполненной работе
- Чувствительность «р» радиометра крвп-зб [л, кг•с -1•Бк-1; (л, кг•c-1•Kи-1)]
- Вопросы к зачету
- Определение активности изотопов цезия и калия в строительных и других материалах
- 2. Порядок выполнения работы
- 3. Загрязнённость изотопами цезия и калия строительных и других материалов
- Классификация строительных материалов по удельной эффективной активности.
- 4. Назначение и технические характеристики гамма - радиометра руг-91.
- 4.2. Технические данные гамма – радиометра.
- 5. Устройство γ-радиометра руг-91
- 6. Подготовка прибора к работе.
- 7. Порядок работы на приборе.
- 7.2. Измерение активности пробы
- Результаты собственных измерений
- 8. Расчёты удельной активности
- 9. Определение удельной эффективной активности строительных материалов
- Удельная активность естественных радионуклидов в строительных материалах (Бк/кг).
- 10. Выводы по выполненной работе
- 11. Вопросы к зачёту
- Методы защиты от ионизирующего излучения
- 2. Порядок выполнения работы:
- 3. Воздействие ионизирующей радиации на человека
- Коэффициенты риска для развития стохастических эффектов
- Основные пределы доз облучения
- 4. Методика проведения работы.
- 4.2. Провести измерения изменения интенсивности поглощения потока гамма излучения различными материалами.
- N ср. Без экрана - n ср. С экраном
- 5. Выводы по выполненной работе
- 6. Вопросы к зачёту
- Радиационная разведка
- 3. Теоретическая часть.
- Мощности доз гамма-излучения на местности в районе эпицентра воздушного ядерного взрыва
- Радиационные характеристики ближнего следа радиоактивных выпадений
- Радионуклиды, попадающие во внешнюю среду после радиационных катастроф и ядерных взрывов
- 3.3.1. Классификация приборов радиационной разведки.
- 3.3.2. Прибор имд-1с
- 3.3.2.1 Экспериментальная часть.
- 3.3.2.2 Порядок выполнения работы.
- 4. Выводы по выполненной работе
- 5. Вопросы к зачёту
- 4) Какая мощности доз γ-излучения на местности в районе эпицентра воздушного ядерного взрыва и ближнего следа радиоактивных выпадений?
- 9. Глоссарий
- Нуклон - протон или нейтрон. Протоны и нейтроны могут рассматриваться как два различных зарядовых состояния нуклона.
- 10. Литература
- Приложение
- Список сокращений
- Приставки для образования десятичных кратных и дольных единиц
- Греческий алфавит
- Универсальные постоянные
- Содержание