logo
Рук-во лаб

3. Воздействие ионизирующей радиации на человека

Воздействию ионизирующего излучения (ИИ) человек подвергается постоянно за счет:

Но наиболее массовое облучение людей может иметь место при применении ядерного оружия, а также после крупных аварий на радиационно опасных объектах. Это требует от каждого человека строгого соблюдения основ радиационной безопасности.

В 1896 русский физиолог И. Р. Тарханов впервые показал, что рентгеновское излучение, проходя через живые организмы, нарушает их жизнедеятельность. И действительно, ионизирующие излучения оказалось очень опасным для человека: в 1895 г. радиационный ожог рук получил Анри Беккерель, в 1902 г. - лучевой рак кожи был выявлен у Марии С. Кюри, в 1907 г. было описано 7 случаев смерти от ионизирующей радиации др. учёных. Мутагенное воздействие ионизирующего излучения впервые установили русские ученые Р.А. Надсон и Р.С. Филиппов в 1925 году в опытах на дрожжах. В 1927 году это открытие было подтверждено Р. Меллером на классическом генетическом объекте - дрозофиле.

Особенности воздействия ИИ на человека характеризуются следующими особенностями:

1. У живых организмов нет специальных органов для распознавания действия этого фактора.

2. Ионизирующая радиация способна вызвать отдаленные последствия:

3. Способна глубоко проникать в облучаемую ткань.

4. Способна к суммарному кумулятивному действию.

5. Поражающий эффект возникает при ничтожных количествах поглощенной энергии. При облучении человека смертельной дозой γ-излучения, равной 6 Гр, в его организме выделяется энергия, равная примерно: E=mD=70 кг•6 Гр=420 Дж. Такая энергия передается организму человека одной чайной ложкой горячей воды.

3.1. Облучение человека. В настоящее время проникающая радиация воздействует на организм человека следующим образом:

1. Вызывает внешнее облучение человека γ-лучами из космоса, с поверхности Земли, от строительных материалов, от чернобыльских радионуклидов.

2. Проникновение газообразного элемента радона в атмосферу, а затем с вдыхаемым воздухом - в организм.

3. Переход радиоактивности в растения через корни и их проникновение в организм человека с пищей.

Поскольку энергия, поглощаемая тканью человека мала, естественно предположить, что тепловое воздействие ионизирующей радиации не является непосредственной причиной лучевой болезни и гибели человека. Действительно, в основе биологического воздействия ионизирующей радиации на живой организм лежат химические процессы, происходящими в живых клетках после их облучения. Радиоактивные излучения вызывают ионизацию атомов и молекул живых тканей, в результате чего происходит разрыв нормальных молекулярных связей и изменение химической структуры клеточных макромолекул. Эти изменения влекут за собой либо гибель либо мутацию клеток.

Воздействие ионизирующего излучения на ткани организма имеет несколько стадий:

1. Образование заряженных частиц. Проникающие в ткани организма α- и β-частицы теряют энергию вследствие электрических взаимодействий с электронами тех атомов, близ которых они проходят.

2. Электрические взаимодействия. Под влиянием проникающей радиации от атомов ткани организма отрываются электроны. Они заряжены отрицательно, поэтому остальная часть исходного нейтрального атома становится положительно заряженной. Этот процесс называется ионизацией. Оторвавшиеся электроны могут ионизировать другие атомы.

3. Физико-химические изменения. И свободный электрон, и ионизированный атом не могут долго находиться в таком состоянии. Поэтому они вступают в сложную цепь реакций, в результате которых образуются новые молекулы. В их состав входят такие чрезвычайно реакционно-способные молекулы, как "свободные радикалы" (ОН- - радикал гидроксила, НО2 - гидроперекисный радикал, Н2О2 - перекись водорода, О - атомарный кислород, Оо - синглетный кислород и др.). Они обладают сильными окислительными и токсическими свойствами.

4. Химические изменения. Образовавшиеся свободные радикалы реагируют как друг с другом, так и с другими молекулами. Вступая в соединения с органическими веществами, они вызывают значительные химические изменения в клетках и тканях. Химический состав клетки изменяется в результате радиолиза её компонентов или метаболических процессов взаимодействия различных клеточных органелл, денатурации белковых и других органических структур с образованием токсических гистаминоподобных веществ. Наступает деполимеризация гиалуроновой кислоты, глико- и липопротеидов, нарушается проницаемость клеточных мембран, структура ДНК и РНК.

5. Биологические эффекты. могут наступить как через несколько секунд, так и через десятилетия после облучения и явиться причиной немедленной гибели клеток, или способствовать развитию:

1) ранних изменений в клетках, которые приводят к возникновению рака; генетическим мутациям, оказывающим влияние на будущие поколения; поражению плода и зародыша вследствие облучения матери в период беременности; развитию лучевой болезни, характеризующейся развитием: геморрагического синдрома, кишечного синдрома и церебрального синдрома;

2) отдаленных последствий: увеличения количества раковых заболеваний, лейкозов, повышения генетического груза, укорочения продолжительности жизни.

Поведение всосавшихся в кровь радионуклидов определяется:

1). Важностью для организма стабильных изотопов данных элементов для определенных тканей и органов. Например, кальций выполняет специфическую роль, входит в состав тканей, в особенности, в костную систему. Йод накапливается в щитовидной железе, цезий является внутриклеточным электролитом и т.д.

2). Физико–химическими свойствами радионуклидов – положением элементов в периодической системе Д.И. Менделеева, валентной формой радиоизотопа и растворимостью химического соединения, способностью образовывать коллоидные соединения в крови и тканях и др. факторами.

Для всех радионуклидов критическими органами являются кроветворная система и половые железы потому, что они наиболее уязвимы даже при малых дозах радиации. Попавшие в организм животных и человека радиоактивные изотопы, так же как и стабильные изотопы элементов, выводятся в результате обмена из организма с калом, мочой, молоком, яйцами (куры, гуси) и другими путями. Различают:

а) Прямое действие - молекула испытывает изменения непосредственно от излучения при прохождении через неё фотона или заряженной частицы, а поражающее действие связано с актом возбуждения и ионизации атомов и макромолекул (в первую очередь, гормонов и ферментов). В зависимости от дозы поглощенных лучей может идти процесс деполимеризации коллоидных структур или, наоборот, их полимеризации.

б) Непрямое или косвенное действие - молекула получает энергию, приводящую к её изменениям, от продуктов радиолиза воды (Н2O2, О2-, ОН-) или растворенных веществ, а не поглощенной самими молекулами.

Большое значение имеет миграция энергии по молекулам биополимеров, в результате которой поглощение энергии, происшедшее в любом месте макромолекулы, приводит к поражению её активного центра (например, к инактивации белка-фермента). Кроме того, не всякая передача энергии ионизирующей частицей приводит к лучевому повреждению. При объяснении этого парадокса были сформулированы принципы попадания и мишени. Согласно указанным принципам в клетках имеются определенные участки (мишени), попадание в которые приводит к поражению. Радиационный эффект обусловлен одним или несколькими попаданиями ионизирующих частиц в клетку. В зависимости от того, сколько случаев попадания в мишень необходимо для поражения (один, два и т.д.), различают объекты одно-, двухударные и т.д. Наиболее строго принцип попаданий применим к анализу поражения одноударных объектов. При этом ионизирующая радиация может вызывать:

- стохастические (редкие) повреждения, для их появления не существует минимальных доз. По мере снижения дозы последствия по-прежнему возможны, но их вероятность становится меньшей. С увеличением дозы повышается не тяжесть этих эффектов, а вероятность (риск) их появления. Основными стохастическими последствиями являются раковые заболевания и наследственные генетические пороки. Коэффициенты риска их возникновения представлены в табл. 7.1.

Таблица 7.1.