Динамика радиационной обстановки после аварии на чаэс
Период | Основные радионуклиды, определявшие (ющие) радиационную обстановку |
Тип радионуклидов |
I Апрель-июнь 1986 г. |
Короткоживущие |
131I, 127Te, 132Te, 140Ba, 140La, 99Mo. |
II Лето 1986-лето 1987 г. |
Среднеживущие | 103, 106Ru, 141, 144Ce, 89Sr, 95Zr, 95Nb, 134Cs, 241Pu. |
III Лето 1987 г.–по настоящее время |
Долгоживущие |
137Cs, 90Sr, 238, 239, 240Pu, 241Am. |
1. Короткоживущие радионуклиды определяли радиационную остановку в течение апреля-июня месяцев 1986 г. В первые дни после аварии на ЧАЭС особенно высокой была концентрация в воздухе 131I, находившегося в аэрозольной форме. 131I — короткоживущий изотоп с периодом полураспада 8,14 дней, является β- и γ- излучателем. Дозовые нагрузки у человека за счёт радиоактивного йода сформировались в течение первых 2—3 мес. после аварии (радионуклид оказывал влияние на здоровье человека в течение 10-15 периодов своего полураспада).
131I имеет 19 радиоактивных и 1 стабильный изотопы с М = 120-139. При распаде он превращается в ксенон-131 с выделением электрона (средняя энергия – 203 кэВ) и γ-кванта с энергией 637 кэВ:
53131I → 54131Xe + е- + γ.
Поступает в организм йод-131 ингаляционным и алиментарным путём. В последнем случае - через биологическую цепочку: почва — растения — молочно-продуктивный скот — молоко - человек). Максимальное содержание радиойода в почве наблюдалось в период 28 апреля – 9 мая 1986 г. (сотни мкР/ч, зачастую выше 1 мР/ч). Попадая в организм, 131I избирательно накапливался в щитовидной железе и создавал кратковременное локальное облучение дозой высокой мощности (более 200 рад/с).
Облучение щитовидной железы привело к нарушению образования в ней трёх гормонов: тироксина, трийодтиронина и кальцитонина. Два первых гормона контролирует процессы роста, созревания тканей и органов, обмен веществ и энергии; кальцитонин - один из факторов управления обменом кальция в клетках, участник процессов роста и развития костного аппарата. Следовательно, после воздействия ионизирующей радиации произошли нарушения этих процессов в организме, особенно у детей. Изменения в генетическом аппарате клеток щитовидной железы явились причиной развития в ней ракового заболевания. Число этих заболеваний, как у облучённых детей, так и у взрослых возросло в десятки раз.
2. По мере распада короткоживущих радионуклидов, радиационная обстановка стала определяться среднеживущими радионуклидами (лето 1986 - лето 1987 г.). Одним из его представителей является цезий-134 - 55134Cs (T1/2 = 2,06 года). При β - распаде его выделяется электрон (энергия 662 кэВ) и γ-квант с энергией 128 и 796 кэВ:
55134Cs → 56134Ва + е- + γ.
Другой представитель среднеживущих радионуклидов - стронций-89 (3889Sr) - Т1/2 = 51 день. Излучая β- частицу с энергией 1,462 МэВ, он переходит в стабильный иттрий-89 - 89Y.
3889Sr → 3989Y + е-
3. Начиная с 1987 г. по настоящее время радиационная обстановка в Беларуси определяется долгоживущими радионуклидами: 137Cs, 90Sr, 238, 239, 240 Pu и 241Am (см. табл. 3.2). Из перечисленного списка большее облучение человека в настоящее время осуществляет цезий-137 (55137Cs).
Во-первых, им загрязнено почти 23% территории Беларуси.
Во-вторых, он является β- и γ-излучателем, T1/2 у него = 30,2 года. Цезий имеет 20 радиоактивных и 1 стабильный изотоп. При β-распаде 55137Cs выделяется электрон (энергия 514 кэВ, макс. – 1,18 МэВ) и γ-квант (энергия – 661 кэВ), что способствует превращению его в стабильный изотоп бария:
55137Cs → 56137Ва + е- + γ.
Рис. 3.1. Загрязнение территории Беларуси цезием-137
Цезий-137 попадает в организм, как правило, с цельным молоком и мясом, полученными в районах повышенного загрязнения. 55137Cs является аналогом калия, содержится преимущественно в крови и мышцах. Циркуляция его в организме и поступление туда по биологическим цепочкам определяют постоянное воздействие ионизирующей радиации на внутренние органы человека в течение всей его жизни. В районах, загрязненных цезием, формирование доз у жителей происходит сравнительно медленно. Поэтому основным видом облучения на сегодняшний день является общее хроническое внутреннее облучение.
Стронцием-90 (3890Sr) загрязнено 10% территории Беларуси. Известны 12 радиоактивных изотопов стронция с М = 81-83, 85, 89-96. Он испускает электрон с энергией 546 кэВ, превращаясь в иттрий-90 (3990Y). Последний теряет электрон с максимальной энергией 2,27 МэВ и превращается в цирконий-90 (4090Zr):
3890Sr → 3990Y + е- → 4090Zr + е-.
Рис. 3.2. Загрязнение территории Беларуси стронцием-90.
Период полураспада стронция-90 и иттрия-90 составляют, соответственно, 29,12 лет и 64,8 часа.
Изотопы стронция накапливаются в костях скелета, в особенности в позвонках, зонах активного роста и перестройки костей. Вызывают развитие опухолей. Эффективный период полувыведения из скелета: 89Sr – 50,4 дня, 90Sr – 6,4∙103 дней.
Плутоний-238, 239 и 240 распространились на 2% территории республики. 94239Pu излучает α-частицы (энергия около 5 МэВ), мягкое рентгеновское излучение с энергией 10-22 кэВ, γ-кванты – 380 кэВ и превращается в уран-238:
94239Pu → 92238U + 24α+ + R + γ
Период полураспада у 94239Pu = 24,38 тыс. лет, у 92238U = 713 млн. лет. Большой интерес представляет также плутоний-241, который испускает α- , β-частицы (122 и 524 кэВ), и γ-кванты (2,54
Рис. 3.3. Загрязнение территории Беларуси плутонием-239, 240.
МэВ), превращаясь в америций-241. Образующийся америций более токсичный, с бóльшим периодом полураспада, чем плутоний-241:
94241Pu → 95241Am + 24α+ + β- + γ
Период полураспада у 94241Pu - 14,4 года, у 95241Am - 432 года. Оба они накапливаются в костях, печени, лёгких. Вызывают развитие хронической анемии, остеопороза, рака костей, лёгких и др.
В зависимости от уровня загрязнения почвы долгоживущими радионуклидами территория нашей республики делится на зоны (табл. 3.3).
Таблица 3.3.
- Введение
- Памятка
- Ионизирующие излучения и дозы их измерения
- 2. Порядок выполнения работы:
- 3. Основные понятия радиационной безопасности
- Альфа-излучатели
- Бета-излучатели
- 3.3. Единицы измерения радиоактивности
- Основные физические величины, используемые в радиационной защите, и их единицы
- Взвешивающий радиационный коэффициент (wr)
- Взвешивающие коэффициенты для тканей и органов (wt)
- 4. Вопросы к зачету
- Дозиметрия ионизирующих излучений. Бытовые дозиметры и радиометры
- 2. Порядок выполнения работы:
- 3. Методы обнаружения и измерения радиоактивности
- 3.1. Детекторы ядерных излучений
- 3.2. Приборы дозиметрического контроля
- 3.3. Радиационный фон
- Среднегодовые эффективные эквивалентные дозы облучения человека за счёт всех источников излучения в (в мкЗв)
- Природные и техногенные источники ионизирующего излучения
- Значения мощности эквивалентной дозы, используемой при проектировании защиты от внешнего ионизирующего излучения
- Искусственные источники излучения (оценка средних годовых доз)
- 3.4. Загрязнение радиоактивное
- Допустимые уровни радиоактивного загрязнения рабочих поверхностей, кожи, спецодежды и средств индивидуальной защиты, част./(см2•мин.)
- 3.5 Устройство бытовых дозиметров.
- Измеренная мощность дозы
- 3.5.4. Оценка удельной активности радионуклидов в пробах.
- 4. Выводы по выполненной работе
- 5. Вопросы к зачёту
- Измерение удельной активности проб почвы
- 2. Порядок выполнения работы:
- 3. Загрязнение радионуклидами почвы
- Выброс радионуклидов во время аварии на Чернобыльской аэс
- Динамика радиационной обстановки после аварии на чаэс
- Зонирование территории республики по уровню радиоактивного загрязнения
- 4.4.4. Определение удельной активности пробы.
- 4.5. Обработка результатов измерения.
- Результаты исследования естественных радионуклидов в почве (Бк/кг).
- 5. Выводы по выполненной работе
- 6. Вопросы к зачёту.
- Определение удельной β-активности продуктов питания β-радиометром руб-01п1
- 2. Порядок выполнения работы:
- 3. Загрязнение радионуклидами продуктов питания
- Республиканские допустимые уровни содержания радионуклидов цезия-137 и строиция-90 в пищевых продуктах и питьевой воде (рду-2001).
- Удельный вес (%) проб пищевых продуктов из личных подсобных хозяйств с превышением рду-2001 по содержанию цезия-137
- 4.1. Назначение кнопок органов управления
- 4.2. Подготовка прибора к работе.
- 4.3. Измерение удельной активности радионуклидов в пробах.
- Результаты собственных исследований
- 5. Выводы по выполненной работе
- 6. Вопросы к зачету
- Определение удельной β-активности пищевых продуктов, выросших в лесу
- 2. Порядок выполнения работы
- 3. Радиоактивное загрязнение леса и его даров
- Удельный вес (%) проб грибов, лесных ягод, мяса диких животных, не отвечающих требованиям рду-2001 по содержанию цезия-137 (частный сектор)
- 4. Измерение β-активности пищевых продуктов, произрастающих в лесу
- 4.1. Подготовка радиометра крвп-зб к работе и проверка его работоспособности.
- 4.2. Измерение радиоактивного фона
- 4.3. Измерение активности пробы пищевого продукта
- Результаты собственных измерений
- 5. Выводы по выполненной работе
- Чувствительность «р» радиометра крвп-зб [л, кг•с -1•Бк-1; (л, кг•c-1•Kи-1)]
- Вопросы к зачету
- Определение активности изотопов цезия и калия в строительных и других материалах
- 2. Порядок выполнения работы
- 3. Загрязнённость изотопами цезия и калия строительных и других материалов
- Классификация строительных материалов по удельной эффективной активности.
- 4. Назначение и технические характеристики гамма - радиометра руг-91.
- 4.2. Технические данные гамма – радиометра.
- 5. Устройство γ-радиометра руг-91
- 6. Подготовка прибора к работе.
- 7. Порядок работы на приборе.
- 7.2. Измерение активности пробы
- Результаты собственных измерений
- 8. Расчёты удельной активности
- 9. Определение удельной эффективной активности строительных материалов
- Удельная активность естественных радионуклидов в строительных материалах (Бк/кг).
- 10. Выводы по выполненной работе
- 11. Вопросы к зачёту
- Методы защиты от ионизирующего излучения
- 2. Порядок выполнения работы:
- 3. Воздействие ионизирующей радиации на человека
- Коэффициенты риска для развития стохастических эффектов
- Основные пределы доз облучения
- 4. Методика проведения работы.
- 4.2. Провести измерения изменения интенсивности поглощения потока гамма излучения различными материалами.
- N ср. Без экрана - n ср. С экраном
- 5. Выводы по выполненной работе
- 6. Вопросы к зачёту
- Радиационная разведка
- 3. Теоретическая часть.
- Мощности доз гамма-излучения на местности в районе эпицентра воздушного ядерного взрыва
- Радиационные характеристики ближнего следа радиоактивных выпадений
- Радионуклиды, попадающие во внешнюю среду после радиационных катастроф и ядерных взрывов
- 3.3.1. Классификация приборов радиационной разведки.
- 3.3.2. Прибор имд-1с
- 3.3.2.1 Экспериментальная часть.
- 3.3.2.2 Порядок выполнения работы.
- 4. Выводы по выполненной работе
- 5. Вопросы к зачёту
- 4) Какая мощности доз γ-излучения на местности в районе эпицентра воздушного ядерного взрыва и ближнего следа радиоактивных выпадений?
- 9. Глоссарий
- Нуклон - протон или нейтрон. Протоны и нейтроны могут рассматриваться как два различных зарядовых состояния нуклона.
- 10. Литература
- Приложение
- Список сокращений
- Приставки для образования десятичных кратных и дольных единиц
- Греческий алфавит
- Универсальные постоянные
- Содержание