8.3.2. Показатели накопления токсичных веществ
Поступление веществ из воды в организм может осуществляться разнообразными путями. Растворенные вещества – через поверхность клеток у одноклеточных и растительных организмов, через поверхность тела или жабры – у многоклеточных животных. Взвешенные вещества могут поступать преимущественно через органы питания, как у простейших, так и у многоклеточных представителей водной фауны.
Особенно высокой проникающей способностью обладают липофильные соединения или неэлектролиты. За счет липофильности и высокой гидрофобности молекулы таких веществ активно переходят из водной фазы окружающей среды и тканевых жидкостей в липопротеиновые структуры клеток, накапливаясь здесь до высоких уровней. Обратный переход без химического преобразования затруднен, в связи с чем, молекулы неэлектролитов концентрируются в тканях и долгое время могут здесь сохраняться, повышая угрозу накопления по пищевым цепям.
На активность накопления вещества гидробионтами влияют факторы окружающей среды и биологические характеристики организма.
Увеличение концентраций ионов кальция или других щелочноземельных катионов в среде понижает, а преобладание щелочных – увеличивает проницаемость мембран. Кальций ингибирует, например, накопление кадмия, и это служит причиной обратного соотношения их содержания в тканях гидробионтов. Кадмий снижает накопление цинка, ртути и других металлов.
Биодоступность вещества повышается с повышением липотропности вещества, со снижением величины заряда иона, со снижением жесткости воды и, в частности, со снижением концентрации в воде двухвалентных ионов, с повышением концентрации в воде комплексообразующих агентов, с повышением температуры до некоторого предела, с возрастанием активности процессов жизнедеятельности.
Очевидно, пищевой путь накопления веществ животными является основным для большинства веществ при их присутствии в малых концентрациях. При повышенных концентрациях пищевой путь остается основным для гидрофобных агентов, а водорастворимые вещества преимущественно поступают через жабры и поверхность тела.
Устанавливающийся с течением времени стационарный уровень содержания вещества в тканях объясняют как результат равновесного состояния между процессами включения и выведения вещества, происходящими в одно и то же время. Активность удаления вещества из тканей обычно оценивают по периоду “полувыведения”, т.е. по времени, за которое происходит снижение его содержание вдвое в организме или в отдельной ткани. Например, период полувыведения ртути из различных органов моллюсков составляет 15…60 суток.
Если скорость поступления вещества в клетку превосходит скорость его выхода из клетки, происходит накопление вещества в тканях. Активность накопления или распределения веществ в компонентах экосистем может быть выражена через соответствующие коэффициенты.
Коэффициент накопления, иликоэффициент концентрирования, представляет собой соотношение содержания токсичного вещества в тканях организма и в окружающей среде. Для некоторых веществ величина этого коэффициента может достигать больших величин. Так, в дафниях величина коэффициента накопления 3,4-бензпирена составляет 13000, фенантрена – 6000, метилртути – 4000, ДДТ – 23000. Ртуть концентрируется в водорослях в 550 раз, в организмах зоопланктона и бентоса – в 2240 раз, в рыбах – до 2700 раз.
Коэффициент накопления вещества является величиной изменчивой. Обычно его значения выше при низкой концентрации вещества в воде. Он существенно изменяется в зависимости от состояния организма и параметров окружающей среды.
Коэффициент накопления по пищевой цепи, иликоэффициент биомагнификации представляет собой отношения содержания вещества в пище и в тканях её потребителя (например, в тканях хищника и жертвы). Вещество считается способным к накоплению по пищевой цепи, если величина этого коэффициента превышает единицу. Накопление по пищевым цепям присуще соединениям липофильным или имеющим сродство к некоторым молекулам биосубстрата и в экологическом отношении оказывается явлением опасным. Известна способность к накоплению по пищевым цепям хлорорганических соединений, ртути, меди.
Зависимость активности процессов накопления и выведения от свойств вещества и окружающей среды, биологических свойств вида и состояния конкретной особи учитывается при создании общей картины токсикинетики вещества.
- 1. Источники и масштабы техногенного загрязнения биосферы
- 1.2. Загрязнение атмосферы
- 1.3.Загрязнение водных систем
- 1.4. Загрязнение почвы
- 2. Управление качеством окружающей среды
- 2.1. Понятие нормы состояния экосистемы
- 2.2. Пределы допустимого воздействия на природные экосистемы
- 3.1.Экологические критерии
- Контрольные вопросы
- 4. Нормирование загрязняющих веществ
- 4.1. Раздельное нормирование загрязняющих веществ в
- 4.2. Контроль состояния атмосферного воздуха
- 4.3. Эффект суммации и его учет
- 4.4. Раздельное нормирование и классификация пдк
- 4.5. Расчетные методы определения пдк
- 4.6. Пдк загрязнений для растений
- 4.7. Сравнительный анализ нормативных показателей Украины и зарубежных стран
- 4.8. Нормативы качества воздуха в производственно-хозяйственной сфере
- 4.9. Регламентация поступления загрязняющих веществ в атмосферу
- 4.10. Определение категории опасности предприятий
- 4.11. Расчет пдв для одиночного источника
- 4.12. Расчет максимальной приземной концентрации вредного вещества
- 4.13. Определение высоты трубы
- 4.14. Регламентация вредных веществ автомобильных
- 4.15. Расчет выбросов вредных веществ от автотранспорта
- Контрольные вопросы
- 5. Нормирование загрязняющих веществ в
- 5.1. Раздельное нормирование качества воды
- 5.2. Общие требования к составу и свойствам воды
- 5.2.1. Качество воды и примеси химических соединений
- 5.2.2. Минеральный состав питьевой воды
- 5.2.3. Бактериологические показатели воды
- 5.3. Трансформация химических веществ в водной среде
- 5.4. Предельно допустимые сбросы и их расчет
- 5.5. Определение условий спуска сточных вод в водоемы
- 5.6. Определение необходимой степени очистки сточных вод
- 5.7. Бассейновый принцип нормирования сбросов
- 6. Нормирование загрязняющих веществ в
- 6.1. Санитарные показатели почвы
- 6.2. Загрязнение почвы тяжелыми металлами
- 6.3. Нормирование загрязнения территорий предприятий
- Контрольные вопросы
- 7. Нормирование загрязняющих веществ в пищевых продуктах
- 7.1. Загрязнение продуктов питания
- 7.2. Природные загрязнители пищевых продуктов
- 7.3. Нормативы пдк загрязняющих веществ в продуктах
- 7.4. Токсическое и канцерогенное действие тяжелых металлов на организм человека
- 7.5. Пищевые добавки и их нормирование
- 7.6. Канцерогенные вещества в пищевых продуктах
- 7.7. Генетически модифицированные продукты (гмп)
- Контрольные вопросы
- 8. Основы промышленной токсикологии
- 8.1. Задачи и методы промышленной токсикологии
- 8.1.1. Критерии и концепции оценки вредных веществ
- 8.1.2. Классификация веществ по токсичности.
- 8.2. Кумуляция и её оценка
- 8.3. Оценка опасности химических соединений в водной среде
- 8.3.1.Оценка опасности химических веществ в рыбохозяйственных водоёмах
- 8.3.2. Показатели накопления токсичных веществ
- 8.3.3. Методы оценки токсичности водных систем
- 8.4. Оценка опасности химических соединений в почве
- 8.5. Экотоксикология – новая наука об окружающей среде
- Контрольные вопросы
- Приложение 1 (продолжение)
- Приложение 2 Предельно допустимые концентрации (мг/л) и лимитирующие показатели вредности вредных веществ в водных объектах
- Приложение 2 (продолжение)
- Приложение 3 Значения пдк химических веществ в почве
- Приложение 4 пдк химических элементов в пищевых продуктах, мг/кг продукта
- Приложение 5 пдк тяжелых металлов в растительном сырье и готовых пищевых продуктах
- Приложение 7 Доказанные канцерогены для человека ( группа 1 по классификации маир)
- Содержание
- Контрольные вопросы ……………………………………………... 16
- Контрольные вопросы ……………………………………………… 26
- Контрольные вопросы ……………………………………………… 36
- Контрольные вопросы ……………………………………………… 77
- Контрольные вопросы …………………………………………… 133
- Контрольные вопросы …………………………………………… 149
- Основы промышленной токсикологии ………………………... 186
- Приложения 1 – 7 ……………………………………………………… 220