1.5.4.1. Утилизация солнечной энергии
Полная мощность излучения Солнца выражается астрономической цифрой ■— 4«1014 млрд.кВт. На каждый квадратный метр суши приходится" в среднем около 0,16 кВт. Для всей же поверхности Земли количество падающей солнечной энергии составляет 10б млрд.кВт, что в 20 тыс. раз превышает производство всех известных видов энергии. Достаточно сказать, что все энергетические потребности стран СССР соответствуют ёолнечной энергии, падающей в пустыне Кара-Кум на квадрат с длиной стороны 67 км. Таких "квадратов" только в этой пустыне — несколько сотен. Весь вопрос в том, как преобразовать энергию падающего излучения Солнца в доступную для практического использования электрическую энергию. Успехи здесь уже есть.
В настоящее время энергия солнечного излучения может широко использоваться для получения в основном низкопотенциальной тепловой энергии (до 100° С) для нужд коммунального хозяйства, в сельском хозяйстве и частично в промышленности. Это различного рода водо- и воздухонагреватели, теплицы, сушилки, опреснители воды и
Иначе обстоит дело с использованием энергии Солнца для прямого или косвенного получения электроэнергии. Прямое превращение солнечной энергии в электрическую происходит с помощью полупровод-
45
пиковых фотоэлектрических элементов — преобразователей, косвенное — посредством получения водяного пара, поступающего в обычную турбину турбогенератора.
Создание солнечных электростанций (СЭС) с получением водяного пара за счет нагревания парового котла оказалось экономически нерентабельным. Экспериментальная солнечная электростанция СЭС-5 мощностью 5 тыс.кВт создана в 1985 г. в Крыму. Благодаря системе зеркал (гелиостатов) общей площадью 40 тыс.м2 солнечные лучи непрерывно фокусируются на паровом котле, что позволяет получать до 28 т пара в час при 250°С. В Крыму 1920 ч солнечного сияния в году,* что позволяет получать на СЭС-5 5,8 млн.кВт-ч электроэнергии и экономить около 2 тыс.т условного топлива. Однако затраты на получение электроэнергии на СЭС-5 примерно в 70 раз превышают затраты ТЭС, работающей на угле. Близкие экономические показатели имеют и СЭС такого же типа, построенные ранее во Франции и США.
Имеются проекты создания крупных СЭС подобного типа мощностью 200—300 тыс.кВт. Однако, несмотря на все усовершенствования, . расчетные затраты на этих станциях во много раз превышают затраты на ТЭС традиционного типа.
В США созданы установки мощностью 30 тыс.кВт, в которых водяной пар получают другим, чем в СЭС-5, путем: солнечные лучи фокусируют на трубе, по которой протекает синтетическое масло. Масло нагревается до 390°С, поступает в теплообменник, где вода превращается в пар, приводящий в действие турбогенератор электроэнергии. В 1989 г. в Калифорнии начала работу аналогичная установка мощностью 80 тыс.кВт. Стоимость электроэнергии здесь сравнима со стоимостью электроэнергии, получаемой на АЭС.
До недавнего времени считалось, что при использовании энергии солнечного излучения будущее за электростанциями на полупроводниковых фотоэлектрических преобразователях (ФЭП). Стоимость существующих установок с ФЭП мощностью до десятков киловатт Намного дороже паровых СЭС, не говоря уже о традиционных источниках энергии. Пока что область применения ФЭП — малые автономные установки, используемые в местах, куда сложно доставить топливо, а также для космических аппаратов.
В 60-х годах группой английских и американских ученых был предложен проект создания мощных космических солнечных электростанций. Предлагалось запустить на высоту 36 тыс .км над экватором со скоростью вращения Земли шестьдесят спутников с панелями полупроводниковых фотоэлементов каждая площадью 160 км2 и массой 50 тыс.т. Получаемая энергия после преобразования в СВЧ передается на Землю, где преобразуется обратно в электрическую. Поначалу каза-46
лось, что проект вполне осуществим. Однако огромная масса гелио-станции (300 тыс.т) создает серьезную техническую проблему по доставке грузов на орбиту. Кроме того, опасность представляет поток микроволновой энергии огромной мощности. Он ионизирует воздух, убивая все живое, распространяет радиопомехи и т.д. Расчеты показали, что суммарные потери на двойное преобразование энергии и потери на ее передачу из космоса сводят на нет выигрыш от размещения подобной СЭС в космосе по сравнению с расположением ее на поверхности Земли. Поэтому более перспективны наземные солнечные электростанции.
- Введение в экологическую химию
- Глава 1
- § 1.1. Биосфера и происхождение жизни на земле
- § 1.2. Энергетический и материальный баланс биосферы
- § 1.3. Антропогенное воздействие на окружающую среду
- § 1.4. Ограниченность природных ресурсов
- § 1.5. Энергетика и экология
- 1.5.1. Тепловые электростанции
- 1.5.2. Гидроэлектростажцжи
- 1.5.3. Атомные эяею1росташщи
- 1.5.4.1. Утилизация солнечной энергии
- 1.5.4.2. Термоядерная энергетика
- 1.5A3. Энергия ветра
- 1.5.4.4. Энергия прилива
- 1.5.4.5. Геотермальная энергия
- 1.5.4.6. Другие нетрадиционные источники
- § 1.6. Экономические и социальные проблемы охраны окружающей среды
- Глава 2
- § 2.1. Мониторинг как система наблюдения и контроля за состоянием окружающей среды
- § 2.2. Процессы массопереноса загрязняющих веществ
- § 2.3. Методы контроля загрязняющих веществ в объектах окружающей среды
- 2.3.1. Спектральные методы анализа
- Глава 3 круговорот веществ в биосфере
- § 3.1. Круговорот кислорода, фотосинтез
- § 3.2. Круговорот азота
- § 3.3. Круговорот фосфора и серы
- Глава 4 экохимические процессы в атмосфере
- § 4.1. Физико-химические свойства атмосферы
- § 4.2. Химические процессы в верхних слоях атмосферы
- § 4.3. Химические процессы в тропосфере с участием свободных радикалов
- § 44. Вода в атмосфере
- § 4.5. Проблемы локального и глобального загрязнений воздушной среды
- 4.5.4.1. Монооксид углерода
- 4.5.5. Тяжелые металлы
- § 4.6. Способы очистки газовых выбросов
- 4.6.1. Очистка газов от твердых частиц
- 4.6.2. Очистка от газовых примесей
- Глава 5
- § 5.1. Почвенные ресурсы
- § 5.3. Почва и вода, эрозия почв
- § 5.5. Загрязнение почв пестицидами
- § 5.6. Утилизация и переработка твердых отходов
- Глава 6
- § 6.1. Краткие сведения о гидрохимии и гидробиологии
- § 6.2. Ашропошнное эвтрофиговжниё водоемов
- § 6.3. Лигандный состав и формы существования
- § 6.4. Внутриводоемный круговорот пероксида
- § 6.5. Роль донных отложений в формировании качества водной среды
- Глава 7
- § 7.1. Виды загрязнений и каналы самоочищения водной среды
- § 7.2. Физико-химические процессы на границе раздела фаз
- § 7.3. Микробиологическое самоочищение
- § 7.4. Химическое самоочищение
- 7.4.1. Гидролиз
- 7.4.2. Фотолиз
- 7.4.3. Окисление
- § 7.6. Свободные радикалы в природных водах
- 7.6.2. Свойства радикалов Oj, он
- § 7.7. Моделирование поведения загрязняющих веществ в природных водах
- Глава 8
- § 8.1. Молекулярный кислород как окислитель. Образование и свойства металл-кислородных комплексов
- § 8.2. Механизмы активации пероксида водорода,
- § 8.3. Типовые механизмы каталитических процессов окисления с участием 02, н202
- § 8.4. Перспективы технологического использования 02 и н202 как экологически чистых окислителей
- § 8.5. Внутриклеточные окислительно-восстановительные процессы с участием 02 и н202
- Глава 9
- § 9.1. Общие сведения о структуре и функции
- § 9.2. Виды токсического воздействия загрязняющих веществ
- § 9.3. Биотесгирование в оценке загрязнения водной среды
- Глава 10
- § 10.1. Характеристики сточных вод и виды их загрязнений
- § 10.3. Особенности биохимической очистки сточных вод
- 10.3.1. Аэробные методы очистки
- 10.3.1.1. Биологические пруды
- 10.3.1.3. Биофильтры
- 10.3.3. Биохимические процессы с участием минеральных форм азота
- Глава 11
- § 11.1. Подготовка питьевой воды
- § 11.2. Применение хлора, озона и пероксида водорода в обработке воды и очистке сточных вод
- 1L2.2. Озонирование воды
- § 11.3. Методы локальной очистки сточных вод
- 11.3.3. Деструктивные методы очистки