1.5.2. Гидроэлектростажцжи
Гидроэлектростанции (ГЭС) представляют собой наиболее простые устройства для получения электроэнергии. Энергоноситель — вода —-поступает в турбину ГЭС из верхнего бьефа реки (водохранилища, созданного плотиной) и уходит в нижний бьеф. Себестоимость электроэнергии, вырабатываемой ГЭС, в среднем в четыре раза ниже, чем у тепловых электростанций, а ее самоокупаемость во столько же раз быстрей.
Полные расчетные гидроресурсы рек планеты оцениваются в 1000 трлн.кВт'Ч. Гидроресурсы, которые можно реализовать с помощью ГЭС, примерно в 30 раз меньше. По оценкам специалистов, даже при полном использовании потенциала всех рек планеты гидроэнергетика может обеспечить человечество электроэнергией не более чем на 25%. 38
На территории бывшего СССР находится 12% мировых гидроресурсов. На начало 1989 г. суммарная установленная мощность ГЭС превышала 63 млн.кВт, а производство электроэнергии в 1988 г. составило 231 млрд.кВт-ч. Экономически эффективный гидроэнергетический потенциал в СССР оценивается в 1100 млрд.кВт*ч. Использование этого потенциала составляет в среднем 20%, в том числе в европейской части — 39%, в Сибири и Средней Азии -•- 20, на Дальнем Востоке — менее 5%.
В промышленно развитых странах эффективность использования имеющихся гидроресурсов намного выше: в Канаде — около 50%, в Японии — 62, в Швеции и Италии — 74, во Франции и Швейцарии — более 90, в США — около 44%.
Существенное отличие ГЭС от ТЭС и вместе с тем их огромное преимущество — это высокая маневренность, т.е. возможность практически мгновенного автоматического запуска или отключения любого числа агрегатов. Это позволяет использовать мощные ГЭС в качестве "пиковых" электростанций, т.е. для обеспечения суточного графика нагрузки энергосистемы и компенсации потерь электроэнергии в сети при аварийном отключении мощностей ТЭС.
Если говорить о большой энергетике, то ГЭС можно разделить на две основные группы: построенные на крупных равнинных и на горных реках. В обоих случаях требуется строительство плотин, создающих необходимый напор воды и запас ее в водохранилище для обеспе-чения равномерной работы ГЭС в течение года.
При строительстве крупных ГЭС на равнинных реках возникает множество экологических проблем, связанных с нарушением естественной миграции рыб и их нерестилищ, с затоплением плодородных пойменных земель, с развитием в застойных речных водах сине-зеленых водорослей и т.д.
Особенно противоречивая ситуация сложилась на Волге, перегоро-женной целым каскадом плотин, в результате чего было затоплено 1,78 млн. га прекрасных пойменных земель и 0,7 млн. га лесов. Зарегулирование стока Волги помимо чистых энергетических решало и комплекс других народнохозяйственных задач, о чем зачастую умалчивается, когда речь идет об ущербе, нанесенном плотинами экологии Волжского бассейна. Плотины обеспечили задержание и аккумулирование в водохранилищах паводковых вод, обеспечили судоходство на Волге, смягчился климат региона, стало возможным развитие орошаемого земледелия. До создания на Волге водохранилищ на обширных просторах Среднего и Нижнего Поволжья свирепствовали катастрофические суховеи ("черная мгла"), ежегодно происходили опустошительные наводнения, уносящие 2/з годового стока реки, напротив, в летнюю
39
межень надолго нарушалось водное сообщение, резко уменьшался объем водопотребления.
Сейчас воды великой русской реки вращают десятки турбин волжских ГЭС общей мощностью более 11 млн.кВт, река обеспечивает водой население Москвы и других приволжских городов — в общей сложности более 60 млн. человек.
В Волгу ежегодно сбрасывается около 7 млрд.м3 загрязненных сточных вод, в том числе более 1 млрд.м3 без всякой очистки, поступает около 400 тыс.т различных органических загрязнений, более 45 тыс.т нефтепродуктов, поистине огромное количество азотных удобрений, стоков животноводческих комплексов и т.д. Предприятия только одного Волгограда ежегодно сбрасывают в реку более 230 млн.м3 хозяйственно-бытовых и промышленных стоков. Плюс к этому — более 700 тыс.т в год атмосферных выбросов загрязняющих веществ, большая часть которых с осадками также стекает в Волгу.
В этом, видимо, и кроется одна из главных причин экологического бедствия на Волге (впрочем, как и на других зарегулированных реках). Во всяком случае в развитых странах, имеющих сходные с нашими природные условия, также сооружаются большие водохранилища, объем которых составляет значительную часть речного стока: в Канаде - 28%, в США - 41% (в бывшем СССР - 27%). Из 10 имеющихся в мире крупнейших по площади затопления водохранилищ только три находятся на территории надпей страны; на третьем и четвертом местах находятся Куйбышевское и Братское водохранилища, на шестом ~ Рыбинское.
В последние годы начато интенсивное энергетическое освоение горных рек Кавказа и Средней Азии (Ингури, Нарым, Пяндж, Вахш и др.), которые обладают исключительно высоким гидроэнергетическим потенциалом. Например, по удельной русловой мощности Вахш пре-восходит такие великие равнинные реки, как Волга, Енисей, Ангара. При этом водохранилища на горных реках не приводят к значительному затоплению плодородных земель и, напротив, создают условия для орошения миллионов гектаров земли.
Уже построено несколько крупных горных ГЭС. Это Чиркейская ГЭС на р. Сулак в Дагестане мощностью 1 млн.кВт с плотиной высотой 253 м, Ингурская ГЭС мощностью 1,6 млн.кВт с плотиной высотой 271,5 м, Токтогульская ГЭС мощностью 1,2 млн.кВт на р. Нарын и др. Наибольшее развитие горные ГЭС получили в Таджикистане на реках Пяндж и Вахш, образующих при их слиянии Амударью. В 1961— 1979 г. на Вахше построена сверхмощная Нурекская ГЭС (2,7 млн.кВт с уникальной насыпной плотиной высотой 300 м). Нурекская ГЭС уже дважды окупила стоимость ее строительства, выработав 98 млрд .кВт *ч 40
электроэнергии. В 1978 г. на р. Вахш начато строительство крупнейшей в мире торной Рогунской ГЭС мощностью 3,6 млн.кВт с земляной насыпной плотиной высотой 335 м.
Создание крупных регулируемых горных водохранилищ на Вахше и Пяндже не только устранит значительную часть дефицита поливной воды для сельского хозяйства в бассейне Амударьи, но и будет способствовать возвращению к жизни Аральского моря.
Справедливости ради, необходимо отметить, что в числе 25 самых мощных в мире гидроэлектростанций только 7 советских, а из 25 самых высоких плотин —■ 5. Крупнейшая в нашей стране ГЭС — Сая-ио-Шушенская (мощностью 6,4 млн.кВт) — занимает 5-е место в мире, Братская ГЭС (4,5 млн.кВт) — 13-е, Нурекская — 25-е. Наиболее крупная ГЭС находится в Венесуэле и имеет мощность 10,3 млн.кВт. В Бразилии завершается строительство ГЭС мощностью 13,32 млн.кВт.
Наряду с мощными ГЭС для выравнивания "пиковых" нагрузок большое значение имеют ГЭС средней и малой мощности. Гидропотенциал малых рек оценивается по выработке электроэнергии в 150 млрд.кВт*ч, тогда как уровень потребления электроэнергии к 2000 г. должен подняться до 1 трлн.кВт*ч. Это. означает, что удельный вес малых ГЭС в принципе невелик (» 15%). Удельные же капиталовложения в маломощные ГЭС выше, чем в ТЭС, мощные ГЭС и АЭС. Кроме того, по подсчетам специалистов, суммарная площадь затопляемых при строительстве малых ГЭС земель оказывается в 5—10 раз больше, чем при строительстве "мощных ГЭС (в расчете на единицу мощности). Этот фактор, а также ряд других недостатков (замерзание малых рек, необходимость защиты от ударных воздействий, отсутствие регулирования мощности и т.д.) послужили причиной того, что на малых рав-винных реках мини- и микроГЭС распространения не получили.
- Введение в экологическую химию
- Глава 1
- § 1.1. Биосфера и происхождение жизни на земле
- § 1.2. Энергетический и материальный баланс биосферы
- § 1.3. Антропогенное воздействие на окружающую среду
- § 1.4. Ограниченность природных ресурсов
- § 1.5. Энергетика и экология
- 1.5.1. Тепловые электростанции
- 1.5.2. Гидроэлектростажцжи
- 1.5.3. Атомные эяею1росташщи
- 1.5.4.1. Утилизация солнечной энергии
- 1.5.4.2. Термоядерная энергетика
- 1.5A3. Энергия ветра
- 1.5.4.4. Энергия прилива
- 1.5.4.5. Геотермальная энергия
- 1.5.4.6. Другие нетрадиционные источники
- § 1.6. Экономические и социальные проблемы охраны окружающей среды
- Глава 2
- § 2.1. Мониторинг как система наблюдения и контроля за состоянием окружающей среды
- § 2.2. Процессы массопереноса загрязняющих веществ
- § 2.3. Методы контроля загрязняющих веществ в объектах окружающей среды
- 2.3.1. Спектральные методы анализа
- Глава 3 круговорот веществ в биосфере
- § 3.1. Круговорот кислорода, фотосинтез
- § 3.2. Круговорот азота
- § 3.3. Круговорот фосфора и серы
- Глава 4 экохимические процессы в атмосфере
- § 4.1. Физико-химические свойства атмосферы
- § 4.2. Химические процессы в верхних слоях атмосферы
- § 4.3. Химические процессы в тропосфере с участием свободных радикалов
- § 44. Вода в атмосфере
- § 4.5. Проблемы локального и глобального загрязнений воздушной среды
- 4.5.4.1. Монооксид углерода
- 4.5.5. Тяжелые металлы
- § 4.6. Способы очистки газовых выбросов
- 4.6.1. Очистка газов от твердых частиц
- 4.6.2. Очистка от газовых примесей
- Глава 5
- § 5.1. Почвенные ресурсы
- § 5.3. Почва и вода, эрозия почв
- § 5.5. Загрязнение почв пестицидами
- § 5.6. Утилизация и переработка твердых отходов
- Глава 6
- § 6.1. Краткие сведения о гидрохимии и гидробиологии
- § 6.2. Ашропошнное эвтрофиговжниё водоемов
- § 6.3. Лигандный состав и формы существования
- § 6.4. Внутриводоемный круговорот пероксида
- § 6.5. Роль донных отложений в формировании качества водной среды
- Глава 7
- § 7.1. Виды загрязнений и каналы самоочищения водной среды
- § 7.2. Физико-химические процессы на границе раздела фаз
- § 7.3. Микробиологическое самоочищение
- § 7.4. Химическое самоочищение
- 7.4.1. Гидролиз
- 7.4.2. Фотолиз
- 7.4.3. Окисление
- § 7.6. Свободные радикалы в природных водах
- 7.6.2. Свойства радикалов Oj, он
- § 7.7. Моделирование поведения загрязняющих веществ в природных водах
- Глава 8
- § 8.1. Молекулярный кислород как окислитель. Образование и свойства металл-кислородных комплексов
- § 8.2. Механизмы активации пероксида водорода,
- § 8.3. Типовые механизмы каталитических процессов окисления с участием 02, н202
- § 8.4. Перспективы технологического использования 02 и н202 как экологически чистых окислителей
- § 8.5. Внутриклеточные окислительно-восстановительные процессы с участием 02 и н202
- Глава 9
- § 9.1. Общие сведения о структуре и функции
- § 9.2. Виды токсического воздействия загрязняющих веществ
- § 9.3. Биотесгирование в оценке загрязнения водной среды
- Глава 10
- § 10.1. Характеристики сточных вод и виды их загрязнений
- § 10.3. Особенности биохимической очистки сточных вод
- 10.3.1. Аэробные методы очистки
- 10.3.1.1. Биологические пруды
- 10.3.1.3. Биофильтры
- 10.3.3. Биохимические процессы с участием минеральных форм азота
- Глава 11
- § 11.1. Подготовка питьевой воды
- § 11.2. Применение хлора, озона и пероксида водорода в обработке воды и очистке сточных вод
- 1L2.2. Озонирование воды
- § 11.3. Методы локальной очистки сточных вод
- 11.3.3. Деструктивные методы очистки