1.5.4.6. Другие нетрадиционные источники
В поисках альтернативных экологически чистых источников электроэнергии ведутся исследования по использованию для этой цели энергии волн. Экспериментальная электростанция сооружена в Норвегии на берегу Северной Атлантики в выступающей нише скалы. Здесь сооружена бетонная камера, в которую "впадают" волны. Под водой в камере имеется широкое отверстие, выходящее в вертикальную бетонную шахту, где установлена воздушная турбина. Накатывающаяся в камеру волна повышает уровень воды в шахте, а когда волна спадает, уровень воды снова уменьшается. Тем самым уровень воды в шахте меняется с частотой волнения моря. Это позволяет засасывать либо вытеснять воздух через турбину, которая приводит в действие электрогенератор мощностью 400 кВт. Волновые электростанции могут быть построены и непосредственно в море. Трудности в эксплуатации волновых станций связаны с непостоянством размеров и скорости движения волн, а также с обеспечением устойчивой эксплуатации в условиях штормовой погоды.
Из других нетрадиционных источников энергии в последнее время все большее внимание уделяется так называемым биогазовым установкам, в которых в процессе анаэробного сбраживания осадков сельскохозяйственного производства, избыточной массы активного ила и других органических отходов получается горючий газ (главным образом метан). Такие установки успешно эксплуатируются во многих странах Западной Европы, США и др. Так, в Индии в 1985 г. их насчитывалось более 400 тыс.шт. В Китае в 1986 г. эксплуатировалось 25 млн. печей и водонагревателей на биогазе.
И конечно же ключевой проблемой, особенно в странах бывшего Союза, является энергосбережение. Например, значительную экономию энергии дало бы применение газовых турбин в доменном производстве — каждая турбина могла бы экономить 11 тыс.т условного топлива в год. Наибольшие потери энергии характерны для крупнотоннажной металлургической промышленности. Только в 1985 г. на металлургических заводах сожгли в факелах 8 млрд.м3 доменного и 0,5 млрд.м3 коксового газа, чего хватило бы для обогрева города с миллионным населением.
Энергетический кризис 70-х годов вынудил ведущие страны мира 50
коренным образом изменить структуру экономики, вследствие чего в последние годы рост энергопотребления уменьшился, в частности в США на 35-40%, а в Японии на 70%.
Пока что рассчитывать всерьез на то, что нетрадиционные источники энергии могут в скором времени заменить ныне действующие, не приходится. По прогнозам специалистов, переход на альтернативные источники энергии произойдет не ранее чем через 30—50 лет. А пока задача заключается в том, чтобы максимально снизить ущерб окружающей среде при использовании традиционных способов получения электроэнергии.
- Введение в экологическую химию
- Глава 1
- § 1.1. Биосфера и происхождение жизни на земле
- § 1.2. Энергетический и материальный баланс биосферы
- § 1.3. Антропогенное воздействие на окружающую среду
- § 1.4. Ограниченность природных ресурсов
- § 1.5. Энергетика и экология
- 1.5.1. Тепловые электростанции
- 1.5.2. Гидроэлектростажцжи
- 1.5.3. Атомные эяею1росташщи
- 1.5.4.1. Утилизация солнечной энергии
- 1.5.4.2. Термоядерная энергетика
- 1.5A3. Энергия ветра
- 1.5.4.4. Энергия прилива
- 1.5.4.5. Геотермальная энергия
- 1.5.4.6. Другие нетрадиционные источники
- § 1.6. Экономические и социальные проблемы охраны окружающей среды
- Глава 2
- § 2.1. Мониторинг как система наблюдения и контроля за состоянием окружающей среды
- § 2.2. Процессы массопереноса загрязняющих веществ
- § 2.3. Методы контроля загрязняющих веществ в объектах окружающей среды
- 2.3.1. Спектральные методы анализа
- Глава 3 круговорот веществ в биосфере
- § 3.1. Круговорот кислорода, фотосинтез
- § 3.2. Круговорот азота
- § 3.3. Круговорот фосфора и серы
- Глава 4 экохимические процессы в атмосфере
- § 4.1. Физико-химические свойства атмосферы
- § 4.2. Химические процессы в верхних слоях атмосферы
- § 4.3. Химические процессы в тропосфере с участием свободных радикалов
- § 44. Вода в атмосфере
- § 4.5. Проблемы локального и глобального загрязнений воздушной среды
- 4.5.4.1. Монооксид углерода
- 4.5.5. Тяжелые металлы
- § 4.6. Способы очистки газовых выбросов
- 4.6.1. Очистка газов от твердых частиц
- 4.6.2. Очистка от газовых примесей
- Глава 5
- § 5.1. Почвенные ресурсы
- § 5.3. Почва и вода, эрозия почв
- § 5.5. Загрязнение почв пестицидами
- § 5.6. Утилизация и переработка твердых отходов
- Глава 6
- § 6.1. Краткие сведения о гидрохимии и гидробиологии
- § 6.2. Ашропошнное эвтрофиговжниё водоемов
- § 6.3. Лигандный состав и формы существования
- § 6.4. Внутриводоемный круговорот пероксида
- § 6.5. Роль донных отложений в формировании качества водной среды
- Глава 7
- § 7.1. Виды загрязнений и каналы самоочищения водной среды
- § 7.2. Физико-химические процессы на границе раздела фаз
- § 7.3. Микробиологическое самоочищение
- § 7.4. Химическое самоочищение
- 7.4.1. Гидролиз
- 7.4.2. Фотолиз
- 7.4.3. Окисление
- § 7.6. Свободные радикалы в природных водах
- 7.6.2. Свойства радикалов Oj, он
- § 7.7. Моделирование поведения загрязняющих веществ в природных водах
- Глава 8
- § 8.1. Молекулярный кислород как окислитель. Образование и свойства металл-кислородных комплексов
- § 8.2. Механизмы активации пероксида водорода,
- § 8.3. Типовые механизмы каталитических процессов окисления с участием 02, н202
- § 8.4. Перспективы технологического использования 02 и н202 как экологически чистых окислителей
- § 8.5. Внутриклеточные окислительно-восстановительные процессы с участием 02 и н202
- Глава 9
- § 9.1. Общие сведения о структуре и функции
- § 9.2. Виды токсического воздействия загрязняющих веществ
- § 9.3. Биотесгирование в оценке загрязнения водной среды
- Глава 10
- § 10.1. Характеристики сточных вод и виды их загрязнений
- § 10.3. Особенности биохимической очистки сточных вод
- 10.3.1. Аэробные методы очистки
- 10.3.1.1. Биологические пруды
- 10.3.1.3. Биофильтры
- 10.3.3. Биохимические процессы с участием минеральных форм азота
- Глава 11
- § 11.1. Подготовка питьевой воды
- § 11.2. Применение хлора, озона и пероксида водорода в обработке воды и очистке сточных вод
- 1L2.2. Озонирование воды
- § 11.3. Методы локальной очистки сточных вод
- 11.3.3. Деструктивные методы очистки