Отработанных технических масел
-
Методы
Используемые технологии
Оборудование
Физические
Воздействие силовых полей
(гравитационного, центробежного,
электрического, магнитного)
Отстойники
Гидроциклоны
Центрифуги
Электроочистители
Магнитные очистители
Фильтрование через пористые
перегородки
Фильтры
Фильтры-водоотделители
Теплофизические технологии
(нагревание, выпаривание, водная промывка, атмосферная
и вакуумная перегонка и т.п.)
Выпарные колонки
Вакуумные дистилляторы
Массообменные аппараты
Комбинированные технологии
Гидродинамические фильтры
Фильтрующие центрифуги Магнитные фильтры
Трибоэлектрические
очистители
Физико-химические
Коагуляция
Смесители-отстойники
Сорбция
Адсорберы
Ионообменная очистка
Ионообменные аппараты
Экстракция
Экстракторы
Химические
Сернокислотная очистка
Кислотные реакторы
Щелочная обработка
Щелочные реакторы
Гидрогенизация
Гидрогенизаторы
Обработка карбамидами металлов
Реакторы-смесители
Недостатки данного процесса заключаются в отсутствии контроля вязкости и фракционного состава получаемого продукта, а также в значительных потерях масла с сорбентом. Возникают трудности и с утилизацией большого количества отработанного сорбента, представляющего опасность для окружающей среды. Синтетические же сорбенты, обладающие высокой термической стабильностью, дающей возможность их регенерации, достаточно дороги. Сорбционную очистку заменяют гидрогенизационными процессами. Однако и в этом случае сорбенты необходимы для защиты катализаторов гидроочистки от преждевременной дезактивации металлами и смолистыми соединениями. Гидрогенизационные процессы все шире применяются при вторичной переработке отработанных масел. Это связано как с широкими возможностями получения высококачественных масел и увеличения их выхода, так и с большей экологической чистотой этого процесса по сравнению с сернокислотной и адсорбционной очисткой.
Недостатки процесса гидроочистки – потребность в больших количествах водорода, а порог экономически целесообразной производительности (по зарубежным данным) составляет 30-50 тыс. т/год. Установка с использованием гидроочистки масел, как правило, размещается непосредственно на соответствующем нефтеперерабатывающем заводе, имеющем излишек водорода и возможность его рециркуляции.
Для очистки отработанных масел от полициклических соединений (смолы), высокотоксичных соединений хлора, присадок и продуктов окисления применяются процессы с использованием металлического натрия. При этом образуются полимеры и соли натрия с высокими температурами кипения, что позволяет отогнать масло. Выход очищенного масла превышает 80%. Процесс не требует давления и катализаторов, не связан с выделением хлор- и сероводородов. Несколько таких установок работают во Франции и Германии.
Исследования показали, что наиболее эффективным средством восстановление качества ОНМ являются малогабаритные регенерационные установки. Применение таких установок позволяет производить регенерацию ОНМ в местах их потребления и, таким образом, исключается транспортировка отработанных масел на пункты переработки, что связано со значительными потерями масла и загрязнением окружающей среды. Кроме того, при этом обеспечивается сбор и переработка масел по сортам и маркам, что является непременным условием получения качественных продуктов после регенерации. Главной трудностью при создании малогабаритных регенерационных установок являются выбор достаточно эффективного, экологически безопасного и экономически оправданного способа регенерации отработанных масел, а также его аппаратурного оформления.
В существующих регенерационных установках на начальных этапах восстановления качества ОНМ применяются физические процессы, позволяющие удалить из масла твердые загрязнения, воду и легкокипящие фракции, затем используются физико-химические методы (главным образом коагуляция и адсорбция), а при необходимости используются химические методы регенерации, которые чаще применяются в заводских условиях.
Такая многоступенчатость приводит к усложнению технологии регенерации, требует применения крупногабаритного и металлоемкого оборудования, а также использования разнообразных расходных материалов. Поэтому, при создании регенерационной установки для использования на транспорте, в сельском хозяйстве, в строительстве и т.п. основной задачей является сокращение количества технологических операций, что позволит упростить конструкцию установки, уменьшить ее габаритные размеры и массу, облегчить работу обслуживающего персонала.
Регенерация на ходу. Особый интерес представляет способ регенерации моторного масла непосредственно в процессе его эксплуатации. Одной из форм этого способа является ввод трибохимического восстановителя (ТХВ), состоящего из щелочных реагентов и кристаллического йода, в смазочную систему двигателя внутреннего сгорания. Основной идеей использования трибохимических восстановителей в системах смазки механизмов является достижение эффекта «безизносности» трущихся поверхностей деталей при одновременном восстановлении и стабилизации физико-химических свойств смазочных масел путём создания саморегулирующейся и самовосстанавливающейся системы (например, двигатель и циркулирующее в нём масло).
Циркулирующее масло, взаимодействуя с элементами трибохимического восстановителя, восстанавливает и стабилизирует свои физико-химические свойства и одновременно становится носителем модификаторов трения, которые обеспечивают образование противоизносных, противокоррозионных и антифрикционных покрытий различного состава на поверхностях пар трения и внутренних поверхностях механизмов.
В качестве щелочных реагентов могут использоваться сплавы натрия и олова (Na+Sn) или смеси (NаОН + SnО2) с введением в них различных по свойствам модификаторов трения и установкой дозатора йода. Лабораторные и моторные исследования по воздействию данной композиции на моторные масла показали возможность длительной стабилизации их физико-химических свойств на высоком уровне. При этом, наряду с традиционно измеряемыми показателями (например, вязкость и щелочное число) изучалось и содержание в масле различных продуктов окисления, непредельных соединений и хелатных соединений олова.
При введении в смазочную систему ТХВ достигается определенная последовательность сопряженных химических реакций циклического характера. Устойчивое их протекание создает единый самоорганизующийся процесс метаболического типа, когда начальные и конечные продукты отдельных реакций постоянно участвуют в едином круговороте превращений. Необратимые потери, возникающие в этом механизме за счет частичного выгорания масла и образования пленок, восполняются дозированным вводом реагентов в реакторное пространство двигателя.
Уровень стабилизации физико-химических свойств моторного масла, таких как щелочное число, вязкость, моюще-диспергирующие свойства, можно задавать и изменять, варьируя временем контакта масла с реагентами и температурой в месте контакта.
Применение ТХВ позволяет использовать низкосортные масла и обеспечивать на некоторое время работу двигателя при недостаточном поступлении масла к узлам трения (масляное голодание). Также возможно совмещение ТХВ с регенерированными маслами. Учитывая уровень восстановления эксплуатационных свойств моторных масел, изучается возможность использования ТХВ в составе регенерационных установок для повышения щелочного числа и образования моюще-диспергирующих присадок.
Выращивание биомассы. Отработанные нефтепродукты (смазочно-охлаждающие жидкости, машинные и моторные масла), не подлежащие регенерации и вторичному использованию, а также остаточные нефтепродукты (котельное топливо, смазочные мазуты, гудроны, вазелины) и другие нефтепродукты кубового остатка можно утилизировать с помощью биологических методов и таким образом получить серию ценных биопрепаратов и физиологически активных соединений. Технология основана на выращивании микробной биомассы на отходах нефтепродуктов, являющихся источниками органического углерода. Конечным продуктом биотрансформации является микробная масса, которая может быть использована для различных целей.
Таким образом, существует множество подходов к решению проблемы утилизации ОНМ. Кроме уменьшения количества вредных выбросов в окружающую среду, регенерация и повторное использование масел позволит извлечь дополнительную прибыль. При правильной организации процесса стоимость восстановленных масел будет на 40-70% ниже стоимости свежих масел при практически одинаковом их качестве. В индустриально развитых странах доля регенерированных масел от общего объема их производства составляет около 30%. К сожалению, в Беларуси в настоящее время отработанные масла практически не регенерируют.
Наиболее простым способом утилизации углеводородсодержащих отходов является их сжигание в виде топлива.
Порядок использования углеводородсодержащих отходов в качестве топлива определен ТКП 17.11-01-2009 «Охрана окружающей среды и природопользование. Отходы. Правила использования углеводородсодержащих отходов в качестве топлива».
К углеводородсодержащим отходам, которые можно использовать в качестве топлива относятся:
- отходы синтетических и минеральных масел (подгруппа А);
- отходы эмульсий и смесей нефтепродуктов (подгруппа В);
- отходы добычи нефти (подгруппа Г);
- шламы минеральных масел, остатки, содержащие нефтепродукты, кубовые остатки (подгруппа Д);
- остатки рафинирования нефтепродуктов (подгруппа Е);
- прочие отходы нефтепродуктов, продуктов переработки нефти (подгруппа Ж).
Запрещается использовать в качестве топлива углеводородсодержащие отходы, содержащие галогены, полихлорированные дифенилы и терфенилы, а также отходы 1 и 2 классов опасности.
Отходы должны сжигаться по заранее разработанным ТНПА, в которых устанавливаются требования к:
- химическому составу топлива;
- концентрации примесей, содержанию компонентов, характеризующих свойства данного топлива;
- количественному и качественному составу отходящих газов, образующихся при его сжигании.
Кроме того, в ТНПА на топливо необходимо указать степень его опасности, класс опасности опасных углеводородсодержащих отходов и показатели пожароопасности в соответствии с ГОСТ 12.1.044. Разработанные ТНПА должны быть согласованы в Минприроды.
Для ввода в эксплуатацию установки по использованию углеводородсодержащих отходов в качестве топлива необходимо наличие проектной документации, положительных заключений государственной экологической экспертизы и энергетической эффективности, также заключения о соответствии принимаемого в эксплуатацию объекта утвержденной проектной документации. В проектной документации должен быть разработан раздел «Охрана окружающей среды».
Технологический режим сжигания углеводородсодержащих отходов устанавливается в опытно-промышленном регламенте в зависимости от характеристики топливоиспользующей установки.
До начала разработки проектной документации на вводимые в эксплуатацию установки по использованию углеводородсодержащих отходов в качестве топлива необходимо получить в территориальном органе Минприроды экологические условия на проектирование объекта и разрешение местных исполнительных и распорядительных органов на проведение проектно-изыскательских работ.
Газоочистное оборудование таких установок должно обеспечить соблюдение нормативов допустимых выбросов загрязняющих веществ в атмосферный воздух не выше величин, указанных в табл. 6.3, а также утвержденных в установленном порядке нормативов выбросов бензола, фенола, формальдегида и уксусной кислоты.
Таблица 6.3. Нормативы допустимых выбросов загрязняющих веществ
- А. А. Челноков, л. Ф. Ющенко, и.Н. Жмыхов
- Предисловие
- Введение Предмет, задачи и методы современной экологии
- Глава 1. Правовые и организационные основы экологической безопасности
- 1.1. Основные направления и принципы государственной политики
- В области охраны окружающей среды
- 1.2. Национальная стратегия устойчивого развития страны
- Устойчивого развития (на 1990 г.)
- 1.3. Законодательные и иные нормативные правовые акты по охране окружающей среды
- 1.3.1.Основные положения законодательства
- 1.3.2. Технические нормативные правовые акты
- Охраны окружающей среды
- Окружающей среды
- 1.4. Права и обязанности природопользователей по охране окружающей среды
- 1.5. Государственное управление и контроль в области охраны окружающей среды
- 1.6. Организация экологического мониторинга
- Приоритетности в системе мониторинга
- 1.7. Ответственность за нарушение законодательства в области охраны окружающей среды и природопользования
- 1.8. Международное сотрудничество в области окружающей среды
- Контрольные вопросы и задания
- Глава 2. Организация работы по охране окружающей среды на предприятии
- 2.1. Система управления окружающей средой на производстве
- 2.2. Экологическая служба организации
- Пример макета должностной инструкции инженера-эколога приводится в Приложении 1.
- 2.3. Организация производственного контроля в области охраны окружающей среды
- 2.4. Экологическая сертификация
- 2.5. Экологическая паспортизация
- 2.6. Экологический аудит
- 2.7. Экологическое страхование
- Контрольные вопросы и задания
- Глава 3. Теоретические основы общей экологии
- 3.1. Формирование научных основ современной экологии
- 3.2. Основные понятия
- 3.3. Среда обитания организмов
- 3.3.1. Факторы среды обитания
- 3.3.1.1. Абиотические факторы
- 3.3.1.2. Антропогенные факторы
- 3.3.1.3. Биотические факторы
- По сухому веществу
- 3.4. Биосфера
- 3.4.1. Общие положения
- 3.4.2. Организация биосферы
- 3.4.3. Движение вещества и энергии в биосфере
- 3.4.3.1. Круговорот веществ в биосфере
- 3.4.3.2. Основные закономерности движения энергии в биосфере
- 3.4.3.3. Энергетика экосистем
- 3.5. Техносфера, ноосфера, техносферогенез
- 3.5.1. Техносфера и техносферогенез
- 3.5.2. Ноосфера и ноосферогенез
- Контрольные вопросы и задания
- Глава 4. Природопользование и антропогенное воздействие на окружающую среду
- 4.1. Природопользование и его виды
- 4.2. Классификация природных ресурсов
- 4.3. Перспективы использования природных ресурсов
- 4.4. Виды загрязнения окружающей среды
- 4.5. Состояние загрязнения природной среды и его влияние на биосферу
- 4.5.1. Атмосфера
- 4.5.1.1. Характеристика, строение и состав атмосферы
- 4.5.1.2. Климат Республики Беларусь
- 4.5.1.3. Загрязнение атмосферы
- От стационарных и мобильных источников на территории Беларуси в 2010 г., тыс. Т
- От стационарных и мобильных источников на территории Беларуси в 2010 г.
- 4.5.1.4. Влияние метеорологических факторов на уровень загрязнения атмосферы
- Определяющие условия рассеивания загрязняющих веществ в атмосферном воздухе г. Минска
- Параметров для основных групп источников
- 4.5.1.5.Трансформация загрязняющих веществ в атмосфере
- 4.7. Цепные фотохимические реакции загрязняющих веществ в атмосфере
- 4.5.2. Литосфера
- 4.5.2.1. Земельные ресурсы
- 4.5.2.2. Деградация почв
- 4.5.2.3. Характеристика минеральных ресурсов
- 4.5.3. Гидросфера
- 4.5.3.1. Характеристика водных ресурсов
- 4.5.3.2. Водопотребление и водоотведение
- 4.6. Глобальные и региональные последствия загрязнения окружающей среды
- 4.6.1. Экологические кризисы и катастрофы
- 4.6.2. Глобальное и региональное изменение климата
- 4.6.3. Истощение озонового слоя
- 4.6.4. Демографический кризис
- Контрольные вопросы и задания
- Глава 5. Техногенное воздействие объектов экономики на окружающую среду
- 5.1. Основные источники выбросов загрязняющих веществ и воздействий на биосферу
- 5.1.1. Источники загрязнения окружающей среды
- 5.1.2. Характеристика и показатели опасности вредных веществ
- 5.2. Основные принципы оценки экологичности производства
- 5.3 Экологическая характеристика пищевой и перерабатывающей промышленности
- Сточных вод в пищевой и перерабатывающей промышленности
- Загрязняющих веществ некоторыми производствами
- 5.4 Экологическая характеристика автотранспорта
- При работе на разных видах топлива (г/км, данные нами)
- 5.5. Экологические проблемы энергетики
- Различных видов топлива на тэс
- Электростанций
- Контрольные вопросы и задания
- Глава 6. Организационные основы защиты окружающей среды
- 6.1. Основные принципы экологической безопасности
- 6.2. Комплексное использование природных ресурсов
- 6.2.1. Общие сведения
- 6.2.2. Использование вторичных ресурсов пищевых и перерабатывающих производств
- 6.2.3. Переработка резиносодержащих отходов
- 6.2.4. Утилизация углеводородсодержащих отходов
- Отработанных технических масел
- В атмосферный воздух для процесса сжигания углеводородсодержащих отходов
- 6.2.5. Возможные методы переработки фосфогипса
- Различных способов утилизации фосфогипса
- 6.2.6. Обращение с отходами производства хлорида калия
- 6.2.7. Утилизация полимерных отходов
- 6.8 Технологическая схема получения вторичного гранулята из отходов пэт:
- 6.3. Энергосбережение и рациональное использование теплоэнергетических ресурсов в промышленности
- Технологии производства в некоторых отраслях промышленности
- Более эффективных источников света
- 6.4. Нормирование качества окружающей среды
- 6.4.1. Общие сведения
- 6.4.2. Атмосферный воздух
- 6.4.3. Шум и вибрация
- Помещениях и на территории жилой застройки
- 6.4.4. Электромагнитное воздействие
- Территории жилой застройки и мест массового отдыха; помещений жилых, общественных и производственных зданий
- Электрического и магнитного полей с частотой тока 50 Гц
- 6.4.5. Нормирование качества воды водоемов
- Некоторых вредных веществ в водоемах
- Некоторых вредных веществ в количестве пдк
- 6.4.6. Почвы
- В различных типах почв
- Некоторых тяжелых металлов в почвах Беларуси
- 6.5. Нормирование поступления загрязняющих веществ в окружающую среду
- 6.5.1.Категорирование объектов воздействия на атмосферу
- 6.5.2. Нормативы допустимых выбросов
- 6.5.3. Инвентаризация выбросов в атмосферу
- 6.5.4. Нормативы сбросов в водоемы
- 6.5.5. Нормативы образования отходов
- Опасных отходов производства по значениям опасного свойства
- Контрольные вопросы и задания
- Глава 7. Технология и техника защиты окружающей среды
- 7.1. Защита атмосферного воздуха
- 7.1.1. Общие сведения
- 7.1.2. Очистка, обеззараживание, обезвреживание и дезодорация газовоздушных выбросов
- 7.1.2.1. Общие положения
- 7.1.2.2. Пылеулавливание
- В зависимости от ее дисперсности
- 7.1.2.3. Обработка выбросов от газообразных и парообразных примесей
- При которых обеспечивается рентабельность адсорбционной установки
- 7.1.2.4. Новые разработки в технике защиты атмосферы
- 7.2. Защита водных объектов
- 7.2.1. Общие сведения
- 7.2.2. Зонирование территории водных объектов
- Водных объектов для населенных пунктов
- 7.2.3. Обработка сточных вод и шламов
- 7.2.3.1.Методы очистки сточных вод
- 7.2.3.2. Биологическая очистка сточных вод
- 7.2.3.3. Локальные и модульные системы очистки сточных вод
- Технология очистки воды, реализуемая в установке «элон-аква», состоит из следующих стадий:
- 7.3. Защита литосферы и обращение с отходами
- 7.3.1. Охрана земель
- 7.3.2. Обращение с отходами производства и потребления
- 7.3.2.1. Общие сведения
- 7.3.2.2. Обращение с отходами потребления
- Твердых коммунальных отходов
- Для процессов обезвреживания тко с применением метода сжигания
- С использованием биологических методов
- 7.3.3. Охрана недр
- 7.3.4. Рекультивация использованных земель
- 7.4. Охрана растительного и животного мира
- 7.5. Защита окружающей среды от физических воздействий
- 7.5.1. Средства и методы защиты от воздействия шума и вибрации
- 7.5.1.1. Общие сведения об акустике и расчет шума
- 7.5.1.2. Основные методы и средства защиты от шума
- 7. 5.1.3 Шумовиброзащитные конструкции
- 7.5.1.4. Современные средства шумозащиты
- И стоимости акустических экранов
- 7.5.2. Средства и методы защиты от воздействия электромагнитных полей
- 7.5.2.1. Общие сведения
- 7.5.2.2. Расчет и защита от электромагнитных полей
- Контрольные вопросы и задания
- Глава 8. Требования экологической безопасности при проектировании хозяйственных объектов
- 8.1. Экологические требования к размещению хозяйственных объектов
- 8.2. Экологические требования при проектировании объектов хозяйственной деятельности
- 1 Архитектурные решения
- 2 Использование возобновляемых источников энергии
- 3 Освещение
- 4 Водоснабжение, теплоснабжение и канализация
- 5 Шумозащитные мероприятия
- 8.3. Генеральный план промышленного предприятия
- 8.4. Состав и содержание раздела «Охрана окружающей среды» в проектной документации
- 8.5. Экологический паспорт проекта
- 4. Удаление, обезвреживание и утилизация животноводческих стоков
- 8.6. Оценка воздействия на окружающую среду и управление риском
- Планируемой деятельности на окружающую среду
- 8.7. Экологическая экспертиза проектов
- 8.8. Проект санитарно-защитной зоны предприятия
- Глава 9. Экономика управления природопользованием
- 9.1. Экономический механизм природопользования
- 9.2. Возмещение вреда, причиненного окружающей среде
- Окружающей среде выбросом, связанным с нарушением требований в области
- Требований в области охраны окружающей среды, иным нарушением законодательства
- Контрольные вопросы и задания
- 1 Должностная инструкция
- 2 Допустимые уровни звукового давления в октавных полосах частот, эквивалентные по энергии, и максимальные уровни
- 3 Ориентировочная шкала оценки опасности загрязнения почв
- 4 Классификация шумовиброзащитных конструкций
- 5 Классификация экранирующих сооружений
- 6 Экологический паспорт проекта