logo search
учебник основы экологии

3.4.3.1. Круговорот веществ в биосфере

Во все геологические периоды геосфера как внешняя оболочка Земли, в которой взаимодействуют земная кора, атмосфера (до озонового слоя), гидросфера и биосфера, и где сосредоточены жизнь и хозяйственная дея­тельность человека, развивалась как единое целое. Единство, саморегулирование и развитие обеспечивались непрерывным движением вещества и энергии в биосфере.

Основу биосферы и ее функций составляет, прежде всего, круговорот биологически важных веществ, таких, как углерод, кислород, фосфор, азот и вода. Циклы элементов существенно отличаются от простого физического преобразования энергии, которая, в конце концов, деградирует в виде теплоты и никогда потом не используется снова.

Биосфера играет важную роль в распределении энергетических потоков на Земле. В год до Земли доходит около 1024 Дж солнечной энергии; 42% из нее отражается обратно в космос, а остальная часть поглощается. Другим источником энергии является теплота земных недр. 20% энергии возвращается в мировое пространство в виде теплоты, 10% расходуется на испарение воды с поверхности Мирового океана. Зеленые растения преобразуют в процессе фотосинтеза около 1022 Дж энергии в год, поглощают 1,7•108 т углекислого газа, выделяют около 11,5•107 т кислорода и испаряют 1,6•1013 т воды. Исчезновение растений привело бы к катастрофическому накоплению углекислого газа в атмосфере, и через сотню лет жизнь на Земле в ее нынешних проявлениях погибла бы. Наряду с фотосинтезом в биосфере происходят почти такие же по масштабам процессы окисления органических веществ при дыхании и разложении.

В организмах содержатся все известные сегодня химические элементы. Для синтеза живого вещества необходимо примерно 40 элементов. Наибольшую роль выполняют основные биогенные элементы.

Биогенные элементы – это химические элементы, по­стоянно входящие в состав организмов. Выполняют жизненно необходимые биологические функции, т. е. являются основой жизни. Прежде всего, это ки­слород (составляющий 70% массы организмов), углерод (18%), водород (10%).

Другие элементы требуются в меньших количествах, но и они также необходимы. Это кальций, железо, калий, магний, натрий, кремний и др. Все элементы попеременно переходят из живой материи в материю косную (неживую), участвуя в более или менее сложных биогеохимических циклах.

Успехи аналитической химии и спектрального анализа расширили перечень биогенных элементов: ученые находят все новые элементы, входящие в состав организмов в малых количествах (микроэлементы), и открывают биологическую роль многих из них. Вернадский считал, что все химические элементы, постоянно присутствующие в клетках и тканях организмов в естественных условиях, вероятно, играют определенную физиологическую роль. Многие элементы имеют большое значение только для определенных групп живых существ (например, бор необходим для растений, ванадий – для асцидий и т. п.).

Содержание тех или иных элементов в организмах зависит не только от их видовых особенностей, но и от состава среды, пищи (в частности, для растений – от концентрации и растворимости тех или иных почвенных солей), экологических особенностей организма и других факторов. Все элементы попеременно переходят из живой материи в косную (неживую), участвуя в сложных биогеохимических циклах, которые можно разделить на две основные группы:

• круговорот газов и воды, в котором главным резервуаром элементов служит атмосфера (круговорот углерода, азота, кислорода);

• круговорот осадочный, элементы которого в твердом состоянии находятся в составе осадочных пород (круговорот фосфора, железа и серы).

Организмы участвуют в миграции химических элементов как прямо (выделение кислорода в атмосферу, окисление и восстановление различных веществ в почвах и гидросфере), так и косвенно (восстановление сульфатов, окисление соединений железа, марганца и других элементов). Биогенная миграция атомов вызвана тремя основными процессами: обменом веществ, ростом и размножением организмов.

Огромную роль в биогеохимической активности играет человек, извлекая ежедневно в ходе добычи полезных ископаемых миллиарды тонн горной породы. Влияние человека на глобальные геохимические процессы с каждым годом только растет.

Круговорот углерода является наиболее значимым для сохранения свойств биосферы. Единственным источником углерода, используемого автотрофными растениями для синтеза органического вещества, служит углекислый газ (диоксид углерода) – CO2, входящий в состав атмосферы или находящийся в растворенном состоянии в во­де. Углерод горных пород (преимущественно карбонаты) автотрофами практически не используется. Круговорот углерода (рис. 3.4) начинается с фиксации атмосферного уг­лекислого газа в процессе фотосинтеза.

Рис.3.4 Круговорот углерода в биосфере

В результате фотосинтеза (рис. 3.5) из диоксида углерода и во­ды образуются углеводы, и высвобождается кислород, поступающий в атмосферу. Часть образовавшихся углево­дов используется самим фотосинтезирующим организмом (зеленым растением или некоторыми микроорганизмами и простейшими) для получения энергии, идущей на рост и развитие, а часть используется животными при их употреблении в пищу. При этом диоксид уг­лерода уходит в окружающую среду через корни, листья и не­которые другие органы растений, а также выделяется животными в процессе дыхания.

Мертвые животные и растения постепенно разлагаются микроорганизмами почвы, углерод их тканей окисляется до CO2 и снова возвращается в атмосферу. Аналогичный процесс происходит не только на суше, но и в океане. Благодаря длительной фотосинтезирующей деятельности, в атмосфере накопилось достаточное количество свободного кислорода для процветания белковой жизни. Более того, в настоящее время для процесса фотосинтеза лимитирующим фактором является не только низкое содержание в атмосфере СО2, но и высокое – кислорода. Фотосинтезирующие зеленые растения и карбонатная система моря весьма эффективно удаляют из атмосферы избыток СО2, который может привести к перегреву планеты и угнетению жизни.

Рис. 3.5 Схема процесса фотосинтеза

Однако необыкновенно возросшее потребление ископаемого топлива, газовые выбросы промышленности, а также снижение по­глотительной способности зеленых растений в связи со значительным сокращением лесов, прежде всего влажных джунглей Амазонки и таежных лесов Сибири, влиянием ряда химических загрязнителей на сам процесс фотосинтеза, начинают заметно отражаться и на атмосферном фонде круговорота углерода.

О масштабах круговорота углерода можно судить по следующим цифрам. Запасы углерода в атмосфере оцениваются в 700 млрд. т, в гидросфе­ре – в 50 000 млрд. т. Если принять, что общий годовой фотосинтез, согласно существующим подсчетам, составляет соответственно 30 и 150 млрд. т, то продолжительность круговорота углерода равна трем или четырем столетиям, а по некоторым данным – 1000 лет. Действительно, содержание CO2 в атмосфере не уменьшается, так как его запасы постоянно пополняются за счет дыхания, брожения и сгорания. Наоборот, существует реальная опасность того, что в результате развития промышленного производства и нарушения равновесного состояния биосферы содержание СО2 в ат­мосфере может значительно вырасти, что приведет к целому ряду отрицательных эффектов.

Круговорот воды в биосфере (рис. 3.6) предполагает, что суммарное испарение уравновешивается выпадением осадков. В средних широтах растения способны задерживать до 25% воды, выпа­дающей в виде осадков. Остальная вода впитывается в почву или стекает по поверхно­сти в водоемы. Благодаря испарению часть воды снова возвращается в атмосферу.

В Германии был проведен количественный учет дождевой воды на всей территории страны. Выяснилось, что из годовой нормы осадков в 771 мм только 367 мм, или меньше 50%, достигает моря в виде ливневых стоков; остальная вода, т. e. 404 мм, испаряясь, возвра­щается в атмо­сферу. Растения поглощают и транспирируют (испаряют) в атмосферу 38% осадков. Показано, что задерживается и идет на создание живого вещества всего 1% атмосферной влаги.

Рис. 3.6 Круговорот воды в биосфере

В экваториальных районах испарение играет еще более существенную роль. Например, известно, что тропические леса бассейна реки Конго испаряют 2/3 вы­падающих осадков. Ежегодно с поверхности Мирового океана в атмосферу испаряется около 880, а с суши 140 мм воды и столько же выпадает на Землю в виде осадков. Живые организмы играют активную роль в круговороте воды на Земле. Подсчитано, что вся вода планеты проходит через живую оболочку Земли за 2 млн лет. Из океана испаряется больше воды, чем попадает в него с осад­ками, на суше – наоборот. «Лишние» осадки, выпадающие на суше, попа­дают в ледяные шапки и ледники и сохраняются там, пополняя грунтовые воды, откуда растения забирают их с помощью корневой системы и используют на рост и развитие. Грунтовые воды питают реки и озера, из которых снова возвращаются в океан со стоком.

Удаление некоторого количества воды в виде паров и водорода в космос компенсируется в основном за счет ювенильной воды, т. e. поднимающейся на поверхность из глубоких магматических очагов в результате вулканической деятельности и землетрясений.

Круговорот азота (рис. 3.7) также охватывает все области биосферы. Его запасы в атмосфере практически неисчерпаемы, однако высшие растения могут усваивать азот лишь после того, как он образует легкорастворимые соли с водородом или кислородом. В этом процессе основополагающую роль играют азотфиксирующие бактерии. Растения, поглотившие азот, в дальнейшем поедаются животными. С энергетической точки зрения круговорот азота можно представить как ряд этапов, которые требуют энергии извне либо получают ее за счет энергонасыщенных соединений. В процессе круговорота азот протоплазмы переводится из органической в неорганическую форму в результате деятельности нескольких видов бактерий, каждый из которых выполняет од­ну индивидуальную функцию.

Рис.3.7 Круговорот азота в биосфере

Aтмосферный воздух является кладовой азота, так как на 78,09% он состоит из него, но, как уже указывалось выше, чтобы высшие растения смогли атмосферный азот усвоить, он должен соединиться с кислородом или водородом. С помощью азотфиксирующих бактерий азот атмо­сферы переходит в легко усваиваемые растениями формы. Растения, использовавшие азотсодержащие соли на pocт и развитие, поедаются животными. Продукты жизнедеятельности последних также с помощью бактерий разлагаются до аммиака, а затем другими микроорганизмами связываются до нитратов и нитритов и т. д. Таким образом, азот постоянно поступает в атмосферу благодаря жизнедеятельности денитрифицирующих бактерий, а также образуется при атмосферных электроразрядах (молниях) и снова включается в круговорот за счет деятельности азотфиксирующих бактерий и зеленых водорослей.

Для круговорота азота, как и для любого другого процесса, необходима энергия. Хемосинтезирующие бактерии, превращающие аммиак через ряд процессов в нитриты, получают энергию за счет разложения; дени­трифицирующие и азотфиксирующие бактерии – за счет других источников.

Азот могут фиксировать многие бактерии, такие, как свободноживущие Azotobacter и Clostridium, симбиотические клубеньковые бактерии бобовых растений, некоторые пурпурные и различные почвенные бактерии. Кроме того, показано, что водоросли и бактерии, живущие на листьях, и эпифиты тропических лесов также могут фиксировать атмосферный азот, часть кото­рого опосредованно используется и деревьями, однако, не обнаружено ни одного высшего растения, которое могло бы самостоятельно получать азот из атмосферы и использовать его в процессе жизнедеятельности. Известно, что в биосфере в целом за год в среднем фиксируется из воздуха 140-700 мг/м3 азота. В основном это биологическая фиксация, и лишь крайне незначительное количество фиксируется за счет фотохимических и электрических процессов.

Круговорот фосфора (рис. 3.8), в отличие от круговорота азота, является сравнительно простым процессом, хотя по своей значимости для биосферы ему не уступает. Основные запасы фосфора содержатся в различных горных породах, которые постепенно за счет вымывания и выветривания отдают фосфаты наземным экосистемам. Фосфаты потребляются, прежде всего, растениями разного уровня организации и используются ими для синтеза органических веще­ств, таких, как аминокислоты, ферменты и др. При разложении растительных остатков и трупов животных бактериями фосфаты возвращаются в почву и затем снова используются растительными организмами и микробами. Помимо этого, часть фосфатов выносится с паводковыми водами в мо­ре, что обеспечивает развитие фитопланктона и существование зависящих от него организмов. Часть фосфора, содержащегося в морской воде и морских организмах, может вновь возвращаться на сушу при вылове рыб, моллюсков, ракообразных, водорослей и т. д.

Рис. 3.8 Круговорот фосфора в природе

Фосфор – один из наиболее важных элементов живого вещества. Он принимает участие в основных биохимических реакциях, обеспечивающих жизнедеятельность организма и его целостность. В связи с высокой активностью в окружающей среде свободный фосфор является относительно редким элементом. Ежегодно человеком добывается 2-2,5 млн т фосфорсодержащих пород, используемых в качестве минерального сырья для получения ряда продуктов, при этом большая часть фосфора исключается из круговорота. Запас же таких пород ограничен, и уже в настоящее время ощущается их дефицит.

Круговорот биогенных элементов в значительной мере обеспечивает плодородие почв.

На суше главным источником биогенных катионов служит почва, в которую они поступают в процессе разрушения материнских пород, а также приносятся атмосферными осадками. Катионы адсорбируются корнями, а затем распределяются по разным вегетативным органам растений. В наибольшем количестве биогенные катионы накапливаются в листьях. Травоядные животные поедают растительную биомассу, травоядных животных поедают хищники или они умирают, минерализация экскрементов и трупов возвращает биогенные элементы снова в почву. В умеренных широтах бóльшая часть минеральных питательных веществ сохраняется в мощном слое гумуса, в котором создаются резервы биогенов и основных питательных веществ. Поэтому выкашивание травы, сбор опада в лесу, пастьба скота, корчевка пней, выжигание растительности, снятие дерна приводит к исчезновению такого ресурса питательных веществ, как гумус. В результате этого нарушается круговорот биогенных элементов, происходит трансформация лесной экосистемы в пустошь или луг со скудной растительностью.